
NASMWVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-011

WVU-SRL-96-01 I

+,?_!U-SCS-TR-96-20

CERC-TR-TM-96-01 i

J

J

erDesign and _.-m.p.._._e,-_.__,_unof Repncated Oba,..,..

b+, Sv.,dJ,+Jrig.oka

_ . :- +

.. i""_̧

mmmmmmmmm_

.National .Aeronautics and Space Administration

/l_Lllw

T

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

(54'o _K-_abol_sh bate

Man.r, Software Engineering

John R. Callahan Date

WVU Principal Investigator

Design and Implementation of Replicated Object Layer

THESIS

Submitted to the Eberly CoSlege of Arts and Sciences
of

West Virginia University

in Partial Fulfillment of the Requirements for

The Degree of Master of Science

by
Sudhir Koka

Morgantown

West Virginia
May1996

H

...... /, ¸.i.¸i̧_ .!_ i_._̧? i?,_ _

Table Of Contents

Table of Contents

_ !i i:ii_:

L_ of Tables iv

L_ of Figures v

Ac_owledgments vi

Abstract vii

1 Introduction 1

1.1 Preview of Chapters 3

2 Related Work 4

2.1 IP Multicasting 4

2.2 Group Communication Concepts 5

2.3 Reliable Multicast Protocol (RMP) 7

2.3.1 RMP Entities 7

2.3.2 Interaction Model 8

2.3.3 Message Delivery and Fault Tolerance Features

2.4 Replicated Data 10

2.5 Replication Approaches I0

2.5.1 Primary - Backup Replication 10

2.5.2 Active Replication 11

2.6 Distributed Transactions 11

2.6.1 Two Phase Locking I2

2..6.2 Atomic Commit Protocol 13

2.6.2.1 Two Phase Commit Protocol 13

2.6.2.2 Quorum based Three Phase Commit 15

3 Design of ROL 17

3.1 Overview of ROL 17

3.2 _ Guarantees and Features 21

3.2.1 RMP Majority 22

3.2.2 ROLO option 22

3.3 RMP Coromut Protocol 23

3.3.1 Data Structures for RMP Co_t Protocol 25

3.3.2 Consistency of RMPCommit Protocol 27

3.3.3 Performance of RMPCo_t Protocol 28

3.4 ROL State S_ifications 30

3.4.1 Normal Operation of ROL 32

3.4.2 Reformation Extension of ROL 37

4 Implementation of Replica_ Object Layer 42

........ : _ i:•:i : :i:ii!ii!:i:,:::iI

i_ili_i _ii_

TableOfContents

4.1 ROL Class Structure 43

4.1.1 Type Registration 43

4.1.1.1 Type Class 43

4.1.1.2 Field Class 44

4.1.2 Dismbuted Transactions 44

4.1.2.1 Lock Class 44

4.1.2.2 Update Class 45

4.1.2.3 Commo_g and Log Classes 45

4.1.2.4 Transaction Class 45

4.1.3 Application Progran_-ning Interface 46

4.1.3.1 Object Cl_s 46

4.1.3.2 Objectlx_l Class 46

4.1.3.3 Chent Class 47

4.1.3.4 ROLEvent Class 47

4.2 An Example" A Simple Replicated Database Application

5 Ve_cation of ROL 52

48

5.1 SPIN Tool 52

5.2 SPIN Model for ROL 53

6 Conclusions and Furore Work 56

6.! Conclusions 56

6.2 Future Work 57

BibHo_phy 58

APPENDIX The RepHcat_ Object Layer Application Programming Interface 60

iii

_t of Tables

List of Tables

<

• !i

TABLE 1 Performance of RMP Commit Protocol without pipelining

TABLE 2 Performance of RMP Commit Protocol with pipelining 29

TABLE 3 Description of Events 31

TABLE 4 Token Site State 32

TABLE 5 Not Token Site State 34

TABLE 6 Not in Group State 35

TABLE 7 Joining Group 36

TABLE 8 Leaving Group 37

TABLE 9 All Normal Operation States 38

TABLE 11 Reform State 38

TABLE 12 Synch Commfts State 40

29

iv

L_t of Figures

List of Figures

i

H

Figure 1 State Diagram for Two Phase Commit Protocol

Figure 2 State Diagram of Three Phase Commit Protocol

Fibre 3 RMP Architecture 17

Fi_e 4 Replicated Object Pool 18

Figure 5 Active replication using totally ordered messages

Figure 6 ROL Server procedure 50

Figure 7 ROL Client Procedure 51

Figure 8 SPLN model for ROL 54

14

16

19

i

AcknowLutgments

Acknowledgments

i!ii !i ! i!ii_i

I would _e to thank my advisor Dr. Jack Calla_hart for directing my research and helping

me throughout my work here. I would _ like to thank Dr. James D. Mooney and Dr. V.

Jagann_an for agreeing to be on my Examining Committee.

An immeasurable amount of appreciation and gratitude go m Brian Whetten of USC Ber-

keley and Todd Montogomery for providing enormous expense, knowledge and support

throughout this work. I would like to thank people in NASA/WVU Research Lab and Con-

current Engineering Research Center for their support and cooperation.

Lastly, but most importantly, I would like to thank my parents and brother for unquestion-

able su_rt, love and encouragement. Wi_out them this would not have been possible.

vi

Abstract

Abstract

One of the widely used techniques for construction of fault tolerant applications is the rep-

lication of resources so that if one copy fails sufficient copies may still remain operational

to allow the application to continue to function. This thesis involves tlx design and imple-

mentation of an object orien_d framework for replicating data on multiple sites and across

different platforms. Oar approach, called the Replicated Object Layer (ROL) provides a

mechanism for consistent replication of data over dynamic networks.

ROL uses the Reliable Multicast Protocol (RAMP) as a communication protocol that pro-

vides for reliable delivery, serialization and fault tolerance. Besides providing type regis-

tration, this layer facilitates distributed atomic transactions on replicated data. A novel al-

gorithm called the RMP Commit Protocol, which commi_ transactio_ efficiently in reli-

able multicast environment is presented. ROL provides recovery proc_es to ensure that

site and communication failures donot corrupt persistent data, and m_e the system fault

tolerant to network p_tio_. ROL will facilitate building distributed fault tolerant appli-

cations by performing the Nardensome details of replica consistency owrations, and mak-

ing it completely transparent to the application.Replicated databases are a major class of

applications which coNd be built on top of ROL.

vii

...... , i:: ¸ : _ :,: , : ,_.... _ : _

Introduction

C_hapter 1 Introduction

There has been a significant increase in the use of distributed systems over the last few

years due to increasing availability of cheaper and faster computers, and new networkAn, g

capabilities like multicasting. Reliability and availability of loosely-coupled distributed

systems is a major requirement for distributed fault tolerant applications. One of the _-

ods of making a distributed application tolerant to site failures and communication link fail-

ures is replication of resources, but a replica consistency protocol is required to main_

the consistency between the replicated data at different sites. Distributed fault tolerant

plications need an approach that provides a mechanism for consistent replication of

over dyn_c ne_orks.
,

Replicated Object Layer (ROL) is one such approach, that provides an object-ofie.n_

framework for replicating data at multiple sites and across different platforms. ROL We-

vides type registration fac_ty to give smmmre to replicated data. Sun's External Data R_

resentation [Sun87] is used to provide ship the data across different platforms. ROL

vides support for perfo_g distributed atomic transactions on replicated data. A novel aI-

gorithm called the RMP Commit Protocol, wNch commits transactions efficiently in

reliable multicast environment is presented_ ROL provides recovery procedures to ensm,'e

that site and communication failures _not corrupt persistent data, and make the system

.... • _i ¸ •

Introduction

fault tolerant to network partitions. Together, the RMP Commit Protocol and the recovery

procedures provide a mechanism for consistent replication of data over dynamic networks.

A reliable communication protocol is usually required to maintain the consistency of state

between functioning replicas and to mask replica failures. The Reliable Multicast Protocol

(RMP) is the communication protocol used by ROL. 1LMP provides reliable delivery, mes-

sage ordering guarantees and fault tolerance on top of an unreliable IP Multicast.

ROL will facilitate building distributed fault tolerant applications by performing the bur-

densome details of replica consistency operations and making it completely transparent to

the application. Replicated databases are a major class of applications which could be built

on top of ROL.

This section explains how a simple replicated database can be built on ROL. The data types

for the replicated data can be created using the type registration facility provided by ROL.

For example, if we are building a replicmed employee database, then an employee table in

a database can be described as an unbounded list of employee objects. The employee ob-

jects cont_ the replicated data of employee structure _'pe created by ROL registration fa-

c_ty. The employee database is replicated on multiple sites belonging to a group called

server group. ROL provides membership algorithms Nat allow sites to join or leave the

goup. Support for remote clients is provided to access the employee objects in the se_'er

group. Simple updates can be made to employee obj_ts using read and write operations.

The changes can be made on the fields of the employee object like name, salary etc. The

updates made to the objects are tot_y ordered, that is _ the sites in the group see the same

sequence of updates. For more complex updates, dismbuted atomic transactions provided

by ROL can be used. A client can begin a transaction and associate object updates to the

u-ansacfion. The transaction has to acq_ locks on the field of an object before m_g an

i• _ •

Introduction

update to that field. Wt_n the transaction is committed the updates are made permanent and

the locks held by the transaction are released. ROL provides support for fault tolerance to

multiple site failures. The consistency of the replicated data is maintained. ROL provides

the flmction_ty transparently to the application.

1.1 Preview of Chapters

This thesis is organized as follows" Chapter 2 gives a brief introduction to IP m_ticasfing

and RMP; discusses concurrency and recovery control concepts in dLm'ibuted databases.

Chapter 3 describes the design of ROL; presents a novel algorithm for committing transac-

tions in reliable m_ticast environment; presents a finite state machine protocol which pro-

vides for mem_rship changes and recovery of the group from site failures. Chapter 4 de-

scribes the implementation details of ROL and presents a sample application built on ROL.

Chapter 5 discusses the approach taken for verifying state specifications of ROL. Chapter

6 presents the conclusions of the thesis.

• ii

Related Work

Chapter 2 Related Work

This chapter presents background to IP Mtflticasting, group communication concepts and

RMP. It then discusses the different approaches to replicating data and f'mally the concepts

of concurrency control and recovery in distributed database systems are presented.

2.1 IP Multicasting

Multicasting is a technique used to pass copies of a single packet to a subset of all poss_le

destinations. This technique has been supported on most local area networks. On these net-

works, a multicast packet to all of the hosts has the same overhead as a umcast packet to

just one of them.

Intemet Protocol supports multicasting [Deer89]. IP Multicast addresses are provided for a

host to receive multicast traffic destined for a certain multicast group. IP Multicast employs

best effort delivery and does not provide message ordering. Multicast rou_g across LANs

is done using one of the routing protocols, Distance Vector Multicast Routing Prot_ol

(DVMRP) [WPD88] or Multicast Open Shortest Path First (MOSPF) routing protocol

[Moy94]. Since many of the present IP routers do not support m_ticasting, an ad hoc so-

lution c_ed tunneling is used to provide rou_g of multicast traffic. Tunne_g is a scheme

_ i ¸

_/__;i_, _

ii iil '

Related Work

that involves encapsulating an IP multicast packet inside regular _ unicast packet and

sen_g the packet to another multicast capable router.

The m_ticast traffic on the Internet is controHeA by Pruning the routing tree to adaptively

restrict _c and by _ting mulficast packet life_. _h multicast packet has a Time-

To-Live(I'rL) value. Only packets with a _ vMue _r than 1 are able to leave the

local network or subnet in which they were created. The multicast router decremen_ the

Tlq_, of a packet as it is transmitted across. Thus, packets _th _gher _ have much larger

scope _a_ smaller TTL packets because the _ can stay larger than most threshold values

as packet _avels among subnets.

The v_ network of interconnected mulficast routers _ called lnternet Multicast Back-

Bone (_one). The MBone allows a single stream of inff-n-m_on to be received by a large

number of hos_ that are distributed glob_y. _e _one _ p__y used to broadcast live

video and auNo meetings, but recently seve_ other appE_cafions like Computer Supported

Coo__ve Work (CSCW) applications and fault tolerant distributed applications have

been developed using the MBone [Hans94].

2.2 Grip Communication Concepts

Process _d object groups, ordering and reliability of messages, and fault tolerance are

some of _eM concepts associated wi_ development of Nstributed applications for group

communication. A process group is a set of processes _ interact to perform a distributed

operation.Two frequently used group communication _Is are publisher-subscriber and

client-server models. The publisher-subscriber model _ws processes to join or subscribe

to a gro_. Individual processes in the group may send messages for the other members in

the grou_ to receive. This model does not require explic_ naming of message destinations.

Related Work

plication and proceed. Together these concepts of resilieacy and fault tolerance attempt to

provide a system model that is robust in face of failures and has the ab_ty to recover from

failures uansparently. RMP is a communication protocol which provides support for all the

group communication requirements mentioned above.

2.3 Reliable MuRicast Protocol (RMP)

RMP provides totally ordered, reliable and atomic m__ast service on top of IP multi-

cast[Mont94]. It provides a transport mechanism by w_ch user can _ign and implement

fully distributed, fa_t tolerant applications without need _ deal with t_ low-level commu-

nication primitives. ILMP supports the publisher-subsrc_r and client-server communica-

tion models for the application developer.

2.3.1 RMP Entities

RMP is based on a model of complex interactions betv,-een processes operating on inter-

connected hosts. _ is organized around three entities: RMP Processes, Token Rings and

Token Lists. An _ Process is a member of a process _up _at is _ing RMP for group

communication. A group of processes communicating to acNeve mes_ge ordering, is re-

ferred to as a Token Ring. Each process may be member of multiple token tings. Altema-

tively, processes may communicate with a token ring through the use of client-server com-

munication model. _ list of members of a token ring is called the Token List. Token lists

are also referred to as membership views because they represent a view of the current mem-

bership of the token ring. RMP provides locks which _ mutually exclusive. A member

may hold one or more locks and the semantics attached to a lock are d_ndent on what the

application requires _ lock to do. Six of these locks are set aside as _ndlers. A handler

i _i ¸ !

• v _

Related Work

is a mechanism that allows a message to be sent to a group and have o_y one member reply

or handle that message.

Processes that are not part of the token ring may send a message to the group, and optionally

be either notified of its delivery to the group or receive a reply from one of the members.

This model of RMP co--uniSon, referred to as Multi-RPC, allows tLMP to suplx_ a

client-server communication model. _s _ows processes that desire information from the

token ring, but do not want to pay the overhead price of actually jo_g the Token PAng,

to communicate directly with the ring.

2.3.2 Interaction Model

RMP is based on a m_ed version of family of protocols called Token Ring Prot_ols

[CM84]. All the messages in the messages are serialized by the token site. The token site

sends an ACK or acknowledgment, containing a special sequence number called a t_es-

tamp. _s ACK is a multicast message sent m response to a _ta message sent to _e group.

In this way the system uses a positive acknowledgment scheme. Upon receipt of _ ac-

knowledgment, the message sender knows whether or not _s message has been receNed

by at least one receiver. _e system also operates as a negative acknowledgment sc_me

to other receivers, who know if they miss a message because of the imposed timest_ or-

dering. Missing messages can then be requested by sending a NACK to the other receNers

or the sender requesting a retr_smission of the missing message. In addition, a message

source places a sequence number on a message to order that message with respect to _er

messages it has or will send. Sequence numbers provide orderhag of messages with respect

to the same site. Timestamps, however provide global ordering across all sites. The infinite

buffeting of the negative acknowledgment is avoided by rotating the token as a cc_nse-

: _i ¸
.... _...... _:_ z_ ; i ¸ .̧........_,

+!

_i/__

: • i/

Re_ Work

quence of generating the ACK for a message and making it mandatory for a receiver to ac-

cept the token only if has all the timestamped messages. Livelocks are avoided by making

token passes mandatory within a specified time interval.

2.3.3 Message Delivery and Fault Tolerance Features

The application is notified by RMP once token is transferred N times after a message has

been acked, where N is the token ring size. _s is referred to as totally resilient or safe de-

liveo-, which ensures that each receiver has the message before application sees it. If K sites

accept the token after the message is times_ped, then K + 1 sites would have to fail before

the message is lost. This is concept of k-resiliency of mes_ges. A message is referred to as

majodty resilient if more than half of the sites have the message. RMP allows application

to se_ct the desired quality of service(QOS) ranging _om unreliable to to_y resNent on

per message basis. The message is delivered immediately to the application and _ pro-

vides a RMP_MSG_QOSMET event notification once desired QOS is met for the message.

tLMP provides efficient membership change extensions for a process to join and leave the

ring. A flexible failure recovery model is provided by _ wNch allows the system to re-

to normal operations in the face of specified minimum size partitions. The reformation

protocol synchronizes the reformed sites to a common synch point, that is all sites have the

same set of packets. If there is a message loss and the common synch point cannot be

reac_d, then it is referred to as an atomicity violation and application is notified about it.

RMP allows application to set fault tolerance level, which refers to the minimum number

of members required for the partition to proceed, to be set on per Token Ring basis.

/

?:

i_ i iI_

_:! / _i i_

ii _ _if/ _ _: _

ii!iii!i!/i i_i!i_i_

ii_;i_iI_/

Related Work

So far, the group _unication concepts and a communication protocol _ provides

suppo_ for these concepts have been discussed. The next sections discuss about replicated

data and _pli_on approaches in distributed systems.

2.4 Replicated D_

A replicated data app_cation is one in which multiple copies of some data items are stored

at multiple sites. The main reason for using replicated data is to increase av__ility. By

storing critical data at multiple sites, the application can operate even though some sites

have failed. Another goal is improved performance. Since there are many copies of each

data item, a transaction is more likely to f'md the data it needs close by, as co_ared to a

single copy application. This benefit is mitigated by the need to update all copies of each

data item. Thus, read operations may mn faster at the expense of slower write operations.

2.5 Replication A_roaches

Two main approaches for replication known in the literature are primary-backup and active

replication.

ii

i

2.5.1 Primary- Backup Replication

In the pr:anary-backup approach, one of the replication servers, the ptxnary receives, eval-

uates and responds to invocations from clients. To ensure that other servers stay mutually

consistent the prim_ must send a checkpoint(snapshot) of its s_ to other members.

Some primary-backup architectures allow backups to respond to _ries m _er to in-

crease the system performance. If the primary crashes, one of the backups _es over from

the failed pfi_ _ resumes execution from the most recent checkpoint. No _rther in-

10

Related Work

vocations can be processed until the new primary has been elected, which could degrade

the performance of the protocol. Since only one replica ever performs an operation, tM rep-

licas need not be dete_istic in nature.

2.5.2 Active Replication

Active Replication, in contrast, is a symmetric approach where each of the replicatio_ serv-

ers is guaranteed to invoke the same set of actions in the same order. _ approach _-uires

the next database state to be determined by the current state and the next action. O_ fac-

tors, such as the passage of time, have no beating on the next state. _n implemen_g an

active replica group it is necessary to en_ that all replicas receive and process the same

sequences of request. This imposes an overhead on all client and replicated server _rac-

tions. Some active replication arcNtecmres replicate only updates, w_e queries are t_ally

replied to improve the performance of the protocol.

2.6 Distributed "lransactions

This section describes the distributed transactions. Section 2.6.1 descnbes about the _ of

locking mechanism for concurrency control and one of the loc_g pohcies, the Two _ase

Locking is expl_ed. _e atomic commit protocols needed to commit a distributed _s-

action are covered in detail in Section 2.6.2.

Transaction is an execution of a program that accesses the shared data item. Conc_ncy

control and recovery[BHG 87] are used to ensure that the transactions execute atonally,

meaning that

• Each transaction accesses shared data without interfering with other transaction.

1I

i i_

Related Work

• If a transaction terminates normally(Commit), then all effects are made permanent,

otherwise(Abort) it has no effect at all.

Concurrency control allows two or more transactions to execute in interleaved fashion

without interfering each other, and always maintaining the consistency of the database.

2.6.1 Two Phase Locking

Loc_g is a mechanism commonly used to solve the problem of synchronizing access to

sh_ data. The idea be_d locking is intuitively simple. Each data item has a lock asso-

ciated with it. Before a transaction T 1 may access a data item, the scheduler first examines

the associated lock. If no transaction holds the lock, then the scheduler obtains the lock on

behalf of T1. If another transaction T 2 does hold the lock, then T1 has to wait till T 2 releases

it. _e scheduler thereby ensures that only one traction can hold the lock at a time, so

only one transaction can access the data item at a time.

Transactions access data items either for reading or for wwitmg them and hence there are

two types of locks, read and write locks. Concurrent reads are allowed since interference

cannot occur, but write operation ne_ exclusive access to the data item. Two locks con-

flict if they are issued by different transactions, and one or both of them are write locks.

Two phase locking policy[EGLT76] is used to guarantee the serializabilty of transactions.

Using such a scheme, no new locks can _ acquired after any lock has been released, re-

suiting in two distinct phases during the lifetime of a transaction, a growing phase where

Ioc_ are being acquired, and a s__g phase where locks are being released. This policy

cotfld result in deadlocks where before eider of two transactions can proceed, one must re-

le_ a lock that other needs to proceed. One of the strategies of preventing a deadlock for-

ever is to use time-out and abort one of the transactions.

12

• • • _ • : i• • :_ _

i i_I_,

Related Work

2.6.2 Atomic Commit Protocol

Atomic Co_t Protocol(ACP) is an algorithm for the coordinator and participants such

that either the coor_ator mad all participants commit the transaction or they all abort it.

Each process may cast one of two votes: Yes or No, and can reach exactly one of two de-

cisions: _rrmlit or Abort. An ACP is an algorithm for processes to reach decisions such

that:

AC 1"_ proces_s that reach a decision reach the same one.

AC2: A process cannot reverse its decision after it has reached one.

AC3: _e Commit decision can only be reached if all processes voted -Yes.

AC4: _ there are no failures and all processes voted Yes, then the decision will be to

Comamt.

AC5: Consider any execution containing only failures that the algori_ is desired to

tolerate. At any point in this execution, if all existing failures are repaired and no

new fail_ occur for sufficiently long, then all processes _511 eventually reach a

decision.

2.6.2.1Two Phase Commit Protocol

The simplest and most popular ACP is the two phase commit (2PC) protocol[Gray78]. The

simplest version of _ is centralized. One of the site is designated as the coordinator. The

coordinator sends a request to prepare to commit to _ the participants. Each site answers

by a Yes (ready to commit)or by a No (abort)message. ff any site votes No, _ the sites

abort. _ coordinator collects all the responses and informs all the sites of the decision. In

absence of failures _ protocol preserves atomicity.

13

.... i)

Related Work

/

_ ii_ _i :_

Figure 1

vote YES e NO

_t

State Diagram for Two Phase _it Protocol

Commit protocols can be described _ing state diagrams[SS83]. In Figure 1, the fin_ states

are circles with thick outlines. In _ protocol, each site (either coor_ator or slave) can

be in one of four possible states. The state q is the initial state, a state in which a site remains

till it decides whether to unilater_y _rt or to agree to co_t the transaction. In _ wait

state w, a coordinator waits for vot,._ from _ of the slaves, and each slave waits for the

final word from the coordinator. _ is _ _ertainty period for each site as it dces not

know whether the transaction will _ committed or not. The site transihons from w _-_m_.state

to comet state c if the decision to commit was made or else it transitions to abort _te a.

A site is in a committable state only if it knows that all the sites have agreed to procee_ with

the transaction. The rest of the states are non-committable. The only co_ttable _e in

2PC is the con-_t state.

14

......... 3 ¸ _:.>/!: :: ..,: :_;.

Related Work

Two phase commit is a blocking protcr.ol. If the coordinator fails, all the sites may remain

blocked mdefimtely, unable to resolve the Wansaction. Locks must be held in the database

while _e _action is blocked, thus rendering data in_ssible by other requests, It has

been proved in literature [SS83] that there exists no non-blocking protocol res_ent to net-

work p_tio_g. When a partition occurs, the best protocols allow no more than one

group of sites to continue while the rem_g groups block. Skeen suggested the quorum

based three phase commit protocol, that maintains consistency in spite of network p_-

tio_ [Ske82]. _s protocol is blocking, an operational site can be blocked until a fail_

is mended. In case of failures, _e algorithm uses a quorum or majority based recovery pro-

cedure to resolve the transaction.

!?

i_

2.6.2.2Quorum based Three Phase Commit

The 3PC protocol is similar to two phase commit, but in order to achieve resilience, another

non-final buffer state is added in 3PC, between w_t and commit states. An intermediate

state, pre-commit state pc is ne_ed to _ow for recovery. After collecting all the votes

from sites, the coordinator sends a pre-co_t if all responded with Yes votes else it aborts

the _sacfion. Upon receiving the pre-co_t the participant sends an ACK to coordma-

tor. The coordinator sends a commit when it receives a quorum (majority)of ACKs else it

bloc_ for more votes.

i ¸

15

i _ •

,_i_ _ _,

Related Work

vote YES vote NO

Pre Commit

Commit

Figure 2 State Diagramof Three PhaseCommit Protocol

The commit and pre-comanit states are committable states in 3PC. In each step of the pro-

tocol, when the sites change their state, they must write new state to stable storage. When

a group of sites detect a failure (a site crash or a network partition), or a failure repair (site

recovery or merging of network partitions), they run _e recovery procedure m order to try

to resolve _e trmnsaction. _e recovery procedure consists of _o phases, first elect a new

coordinator, and next attempt to form a quorum that can resolve the transaction. After col-

lecting the states from all the sites, the coordinator tries to decide how to resolve the trans-

action. If any site has previously committed or aborted: then the transaction is immediately

committ_ or aborted accor_gly. Otherwise, the coordinator tries to establish a quorum.

A commit is possible if at least one site is in the pre-commit state and the group of sites in

the wait state toget_r with the sites in pre-co_t state form a quorum or a majority. Oth-

erwise, the sites block till the network partitions are recovered.

16

: Design of ROL

iiii_il' _/iI_ __iiill

'!_:/i_i/_ ,:i_i(_

ii i _ _i

i : i:•i¸

C_hapter 3 Design of ROL

This chapter discusses the overview of ROL and _en describes the vafio_ guarantees pro-

vided by RMP to ROL. The _ Commit Protocol is presented next. Finally, the

model of ROL is described which specifies the membership change, virtual token fi_ and

recovery algorithms.

3.1 Overview of ROL

(APPLICATIONS AND TOOLS ?

1l t

1 1

1 1
I

t REPLICATED OBJECT
LAYER

MESSAGING LAYER

LIAB- MULTICAST PROTOCOL

Figure 3 RMP Architecture

17'

De.sign of ROL

ROL exists as a component in Reliable Multicast Protocol Architecture. It is layered on top

of Messaging layer. RMP provides reliable delivery, message ordering guarantees and fault

tolerance on top of an unreliable IP Multicast. RMP handles data packets of sizes up to

• ose that can be handled by the netwo_. The messaging layer provides support for seg-

mentation and reassembly of larger messages of s_s up to 5 Mbytes.

The ROL has two types of members ROL Servers and ROL Clients. The ROL Server is a

member of a process group that uses tLMP as its transport mechanism and protocols in ROL

to maintain consistency of data. A ROL Server can be a member of multiple RMP

REPLICATED OBJECTPOOL

REPLICATED OB_CT

OBJECT POOL

I (maps to)

RMP TO_N
RING

I (maps to)

IP MUL1TICAST

ADD_S, POR'I

Figta'e 4 Replicated Object Pool

token rings. ROL Clien_ corm'nunicate with the ROL Servers using Multi-RPC.

18

: :)i¸ :5 i.i ¸¸:?:::: ¸¸ :_>

A

Design ofROL

ROL provides support for replicated objects. Each object has a type associated with it

which can be registered by the type registration facility provided by ROL. Basic data types

like integer, character etc. and composite types like structures and arrays can be created us-

ing _s layer.

Objects are grouped into object pools, and each pool is replicated among all the members

in the 1LMP token ring. The figure 4 shows ROL Servers A, B and C. For simplicity it is

assumed in the figure that each server is a member of only one group and all servers belong

to same group. The objectpool containing objects 01, 02, 03 is replicated on these three

ROL Servers in the group. An object group or pool in ROL maps to ILMP Token _g in

RMP layer, which in turn maps to a IP multicast address m IP layer. Thus, it is possible for

a ROL Server to have multiple replicated objectpools each corresponding to the token ring

it is a member of. ROL Clients can use Multi-RPC to get information about objects in a

replicated pool.

1 Client A

" _ ._"_ _ Client B
Server Group -" <

--L_Y

Client Request (totally ordered message)
Result / Response

Figure 5 Active replication using totally ordered: messages

19

Design of ROL

ROL uses active replication approach to replicate data. All the sites m _ group are repli-

cas and they receive and process requests in same order. RMP provides reliab_ty which

means all the members in the group receive the request. RMP also provides ordering guar-

antees. The requests are sent to the repficas using tot_y ordered messages provided by

RMP, thereby ensuring all the replicas receive the requests in the same order. The process-

ing of the request must be dete_tic, i.e, if all replicas are in identical objectpoot state,

then after processing a request all the repficas must be in _e identical objectpool state. The

ROL clients send requests to servers as totally ordered messages as shown in figure 5. One

of the servers which is the token site sends back the result or response to the client.

ROL provides read and write ope_ons to access and update objects respectively. Updates

to objects are done with tot_y ordered messages, i.e all the members in the group receive

the updates in the same order. Hence, the consistency of replicated data at different sites in

a group is preserved in absence of majority partition failures. The updates are _ghly effi-

cient, as MP provides high thr_ghput for totally ordered messages with low l_ency.

ROL provides multi-granular readlwfite locks on replicated objects and facility to do trmns-

actions for more complicated up_es. An ROL transaction uses two ph_ loc_g to guar-

antee serializabilty of operations _d uses a special co_t algorithm c_ed RMP Commit

to commit a vansaction. _e the transaction is going on, all the oper_ons are written to

local logs at all the ROL servers in the group. The transaction can either be co_ed or

roiled back. All the locks acquired by _e transaction are automatic_y released at the end

of the transaction. One of the servers no_es the client about the result when the commit

is done. A transaction is aborteA if it ran more than a specified amount of time which helps

in reducing deadlocks (refer to Section 2.6.1). ROL provides a membership change algo-

rithm to allow ROL Servers to join and leave a group. To allow an objectpool to be repli-

cated at multiple sites, this layer can copy objects to new sites, and can send updated copies

20

Design of ROL

to sites which have partitioned or failed away and then rejoined. The layer also provides a

recovery control mechanism if a majority partition fails.

3.2 RMP Guarantees and Features

The design of ROL is based on several guarantees and feamre_ that RMP provides

[Mont94]. This section describes how ROL uses these features to provide a replicated oh-

ject framework.

• Reliable delivery and total ordering of messages - T_ messages are received at all sites

reliably in the same order. This property is used by ROL for replicating data consistent-

ly in the server group.

• Majority resilience of messages - The application is notified when the message has been

delivered at majority of the sites in the ring. In the event of multiple site failures, the

majority partition is guaranteed to have the message. This property forms the basis of

RMP Commit Protocol.

• Virtual synchrony - The user can program as if the system is sched_ed one dis_buted

event at a time.

• Handlers - A handler is a mechanism that allows a message to be sent a group and have

o_y one member reply or handle that message. This property is _ in the virtu_ to-

ken ring algorit_.

- Reformation- The reformation protocol of RMP provides recovery from minority par-

tition failures. The protocol synchronizes the packets at all sites and the state of Order-

H

21

: ;!i! ii

Design of ROL

ingQ is made identical at all sites. The reformation protocol is used by ROL to recover

from minority partition failures in the ring.

• Fault tolerance levels - RMP allows application to set fault tolerance level, which refers

to the minimum number of members required for the pamtion to proceed, to be set on

per Token RAng basis. This property is used by RMP Commit Protocol to allow only

majority partitions to continue.

The section 3.2.1 defines the term RMP Majority which forms the basis of RMP Commit

Protocol and the _ction 3.2.2 describes the ROLO option provided by RMP for ROL to

pass some information to all the members in the group on the back of RMP's control pack-

ets.

3.2.1 RMP Majority

Let's define RMP Majority as Size/2 + 1, where Size is the size of the group. The messages

are r_eived by at least _P Majority number of mem_rs before the QOS is met. The fault

tolerance level of the RMP ring is set to RMP Majority, i.e., if each partition after a failure

must have at least _ Majority number of members in it in order to continue operation,

then at least one of them will always have any message eventually delivered to all members

of the primary pavAtion if one is able is to continue functioning.

3.2.2 ROLO option

RMP provides an ROL overload (ROLO) option to pass some information to all members

with each token _s. The overload option allows the _ token site to insert some data

into the header of RMP control packets. The group members can read _s information

when they receive the control packet. The ACK and New List packets are the control pack-

22

...... _ _ i ¸:¸¸'..... i...... _ _ '+; ':" '¸ _

/ , iI

i

Design of ROL

ets that cause a token pass in RMP. RMP provides two callback functions, one to write

some data into the control packet, and the other to read the data from the control packet.

ROLO option is used by ROL to pass the status of a transaction at a member site to other

members in _e group.

3.3 RMP Commit Protocol

Thecoordinator-participant scheme of atomic commit protocols descfi_ in Section 2.6

becomes quite inefficient in RMP environment. The coordinator multicasts the prepare,

pre-commits and commit messages to the group and the participants respond using unicast

connections to coordinator. The three phase protocol commit incurs lot of messages and

doesn't scale to RMP environment well. ROL uses the active replication approach i.e.,

ROL functions as a deterministic state machine where all the replicas in the group maintain

the same state using totally ordered messages. Hence, RMP Commit protocol uses a decen-

tralized protocol where all sites are equals instead of a coordinator-participant scheme.
o

Only a single comn-tit message is multicast to the group to commit a transaction using this

protocol. The status of transaction at different sites in the group is transmitted by piggy-

backing the status messages on the _ ACKs using the ROLO option provided by RMP.

The size of the status message is small compared to the size of the ACK packet, and hence

does not hurt the performance of RMP. Thus, the transaction at each site proceeds depend-

ing upon the global information provided by the status messages "pi_backed" on ACKs.

The RMP Commit protocol provides for pipelining of transactions, i.e., one transaction

does not block the progress of another.

The commit protocol must handle two cases. The first case occurs if any of the sites con-

tinue processing, and the second is if all the sites stop functioning. For the sites which con-

23

Oesign of ROL

tinue processing, either all of them have to receive the co_t message or none of them

_. If all sites stop functioning, at least P of the sites have flushed the commit message to

disk so that it can be recovered. The persistence constant P, is a constant between 1 and

RMP Majority - 1, which specifies the minimum number of sites that must have flushed a

commit to disk before the commit is defivered.

In order to handle both these requirements, the transaction algorithm wffi not allow a corn-

mit message to be committed (or notified to the application) at any site until that site knows

the Commit message has be_n flushed to stable store at a minimum of P sites, and has been

received at the majority of sites in the group. When the first step is met, we say that it has

been made P-persistent. The second requirement is met when the packet would be deliv-

ered with RMP's majority resilience. Each time that RMP gets an ACK or a NewList pack-

et which does not have any holes or missing packets preceding it in the OrderingQ, RMP

notifies the ROL of this condition using Token Pass notifications when the token pass

_ts total ordering requirements. The ROL can use this information to keep track of ma-

jofity resilience.

ROL needs to know how many sites have flushed a co_t message to stable store in order

to decide whether that particular message has achieved P-persistence. Two problems were

encountered while trying to determine the persistence of a commit message at a site. _e

first problem is that it will be a lot of overhead if the data packets are used to send this in-

fo_ation. Instead RMP's ability to pass information wi_ each token pass is used here. The

RMP token site uses RMP' s overload option to send the status of a flush. The second prob-

lem is that stares of flushes of different Commit messages must be known, which means

Commit Message ID and the number of sites _at have flushed that message has to be

passed with each token pass. But this could add a significant amount of overhead to RMP' s

24

< :_i_ •

_!iii _ ii

i¸ _ •

Design of ROL

performance. Hence, an assumption is made that flushes of all Commit messages are seri-

alized according to the timestamp of the ACK that acknowledges them. Therefore the RMP

token site sends the most recent timestamp that satisfies the condition _ all the Commit

messages with smaller fimestamps have been flushed to _sk on that site.

3.3.1 Data Structures for RMP CommR Protocol

Each site in the token ring has these _ structures:

PersistenceTSP: All the Commit messages before and including this timestamp have

been flushed to the disk at that pamcular site.

PersistenceTSL: List of the PersistenceTSP values at all the sites in the RMP token ring.

CommitQ: The ROL keeps track of the commit messages that are in progress through

the use of CommitQ. The CommitQ holds a spot for each Commit message that the

ROL knows about whose transaction has not yet been committed.

Each slot in the CommitQ goes through the following states, in order.

° WAIT

,. DEL_RED

- CO_TED

Hasn't achieved the required persistence and majority resilience.

Required persistence and majority resilience are met.

All the changes made by the transaction are made permanent to sta-

ble store.

Suptx)se a transaction A is in progress. All the updates made by A are logged on in the

memory and note that no changes have been made to the data A is operating on. The trans-

action A is committed by sending a co_t message to all the sites. The QOS of message

25

" i 7 ;'(;:

Design of ROL

delivery used for commit message is majority resilient. The commit message contains the

ID of _e transaction to be committed and the required persistence. When the commit mes-

sage arrives, it is put into CommitQ. The site fills up each slot in the CommitQ with other

information that is needed for the commit to proceed such as the timestamp of commit mes-

sage packet and the process id's of sites p_cipating in the transaction. The state of the slot

is then set to the wait state. If there are no commit messages before _s commit message to

flush, then each site tries to flush contents of commitQ slot of the commit message and the

updates made by the _saction to the stable store. After the flush is completed, the site

updates the value of the Persistenc_TSP to the timest_ of the commit message packet.

The PersistenceTSP is then transmitted to the group using ROL overload option when the

site becomes RMP Token Site. Other sites read the value of PersistenceTSP sent by the cur-

rent _ Token site and update the values in Ne PersistenceTSL for the token site. Peri-

odically, the persistence of the transaction is checked, and if it has acquired the minimum

persistence and the majority resilience (that is message is received by majority of the mem-

bers), then the co_tQ slot transitions to delivered state. The updates made by the trans-

action are made permanent in the memory and the application is notified about the success-

ful completion of _e _saction once slot transitions to this state. The locks held by the

transaction are released at _s point. Once the updates are made permanent to the stable

store the slot transitions to committed state. If the site didn't flush the contents of commit

packet to the disk m wait state, then it updates the value of PersistenceTSP. This helps in

garbage collection of records flushed in wait state. When the persistence of the transaction

equ_s the number of sites involved in the transaction, then these records are deleted. The

slot is dequeued once the slot is in commJ_ed state.

26

_i(

• H ii̧

i_ i i

Design of ROL

3.3.2 Consistency of RMPCommit Protocol

The consistency of RMPCommit protocol is informally proved here by considering all the

possible failure cases:

Case I: For all the sites continuing processing, either all of them commit the transaction

or none of them will.

(a) If a minority of the sites fail and the transaction is commi_ed, then one of the

sites continuing processing must have the commit message since it has been

committed after majority resilience is achieved. During reformation,

synchs the messages at all the sites to a common point and all the sites have

the commit message.

(b) If a majority of sites fail, then the recovery algorithm given in section 3.4.2 is

used.

Case H: If all sites fail, then a recovery algorithm given in section 3.4.2 is used.

The recovery algorithm described in section 3.4.2 recovers all the commits that have taken

place in the ring, from majority or _ site failures. The basic principle of the algorithm is

• at the commit message and the updates made by the transaction are flushed to P sites

where P is between 1 and ILMP Majority - 1. If the number of sites taking part in the recov-

ery algorithm is N - P + 1 sites (from the old ring) then one of the sites must have informa-

fion on all the co_ts, since flushing of all the commits to the disk is serialized.

27

/

Design of ROL

3.3.3 Performance of RMPCommit Protocol

The performance of RMP Commit Protocol is dependent upon stable store processing and

the _e taken by RMP to pass the token in the ring. If the stable store processing is fast

enough then the transaction should achieve minimum persistence by the time it achieves

majority res_ency. The main advantage of the protocol is that it notifies the application im-

mediately after the two conditions of minimum persistence and maj.ori_ resilience are met.

It does not have to wait for the transaction to be flushed to stable stores at all sites.

The optimistic latency is the time needed by the transaction to gain majority resilience and

the transaction has achieved minimum persistence in that time. The time taken by a trans-

action to achieve majority resilience is (N/2 + 1) token passes after the commit message has

been acked (i.e. N/2 + I members have the message). The actual latency is the time needed

by the transaction to g_ both majority resilience and minimum persistence.

Optimistic latency = Tmajori _ resilience = (N/2 + 1) Token Passes

Actual latency = Max(Tmajority resilience, T min. persistence)

The tables 1 and 2 tabulate the theoretical performance figures for tLMP Commit Protocol

using the opt_tic latency. It takes N/2 + I token passes to commit a transaction. A token

pass involves a ACK and one or many DATA messages. Hence, at least N + 2 messages

are needed to commit a transaction. Multiple commit messages can also be bundled into

one message to improve the performance of the protocol. Another option provided by

is multiple data packets can be acked by a single ACK packet. N + n + 1 messages are need-

28

Design of ROL

ed to commit n transactions at _fferent sites, but whose commit messages are acknowl-

edged by one ACK.

No. of Commits Messages No. of Messages

One Commit (N/2 + 1)(ACK + DATA) N + 2

n Commits acknowledged by one
ACK

(N/2 + 1)(ACK + DATA)

+ (n - 1)DATA

N+n+l

TABLE 1 Perfo_ of RMP CommitProtocolwithout pipelining

The performance of the commit protocol can be improved by pipelining the transactions If

the commit messages are acknowledged after one another, then only an additional ACK

and DATA messages are needed to commit two transactions.

,_ •Z _

i_

No. of Commits Messages No. of Messages

2 Commit messages acked one after

another

m Commit messages acked one _er
another

m rounds of Co_t messages
acked one after ano_er with n mes-

sages acknowledg_ by each ACK

(N/2 + 2)(ACK + DATA)

(N/2 + m)(ACK + DATA)

(N/2 + m)(ACK + DATA)

+ m(n - 1)DATA

N+4

N+2m

N+mn

TABLE 2 Pe.fform_ of RMP CommitProtocol withpipelining

For example, a commit message is sent out as a totally ordered message and gets a times-

tamp of 9. The requ_ Persisteace is set to 2 and the size of the group is 9, so RMP Ma-

jority is 5. Assume that the sequence of ACKs and New List packets are ACK(9), ACK(10,

11), NewList, ACK(12), ACK(I3), ACK(14, 15), NewList., ACK(16). The ACK(14, t5)

satisfies the majority resilience for the commit message as five token passes have taken

place and majority of _e sites m the group have the message. Since there have been five

29

Design of ROL

token passes, five sites have been the RMP token sites one after other, before the majority

resilience has been achieved. A site can become RMP token site only if it has all contiguous

fimestamps and associated packets upto and including the token transfer that is making it

token site. Hence all the five sites in the token ring after the token site which sent out

ACK(9) have received the commit message. If the flushing of the commit message is fast

enough given the speed of today' s processors, there is a high probability that two of the five

token sites have succeeded in their flushes and sent out their updated PersistenceTSP to the

_oup. If the minimum persistence is met by the time the commit message gains majority

resiliency, then the time taken to commit a message is only five token passes, which is the

best case performance.

3.4 ROL State Specifications

_e state representation of ROL is represented as state transition tables. These tables sIxx:-

ify the membership change and recovery algori_. It also describes the virtual token ring

_gorithm implemented in this layer to handle the load balancing among the replicas. The

s'_ate representation is intended to facilitate the ve_cation _d vNidation of the ROL pro-

t_ol. _e state machine is driven by events which are reception of RMP Events [MCW95],

ROL Data and ROL Control packets, and expiring timers. A state transition takes place on

occurrence of one particular event and a condition being true. The condition applies before

the act'aM state transition took place. The state representation is divided into two pans, nor-

mal and reformation modes. The reformation mode describes the recovery operations per-

formed by ROL when the RMP reformation fails.

30

.... i _

Design of ROL

:if :i _i_ i •

H
o

Event Description

Data Reception of multicast ROL Data packet

Unicast Data Packet Reception of unicast ROL data packet

Token Pass Reception of Token Pass packet (ROL Control Packet)

Ulxtate Pool Start Reception of Update Pool S_ packet (ROL Control Packet)

Update Pool End Reception of Update Pool End packet (ROL Control Packet)

Synch Commits Request Reception of Synch Co_ts Request packet _OL Control Packet)

Abort Reformation Reception of Abort Reformation packet (ROL Control Packet)

Resume Normal Operation Reception of Resume Normal Operation packet CROL Control Packet)

Umcast NACK packet

Pass Token Alarm

Recv Token Alarm

ving Group AI

_P_GRP_CHANGE

G RP REFORM
D

RMP_GRP_JOIN

_GRP_FORM

_GRP_RCVLCK

RMP_GRP_DENIXZK

RMP_FAILREF

RMP_ATOMV

Reception of Unicast NACK packet (ROL Control Packet) NACKs for
commit messages

Pass Token Alarm has expired.

Recv Token Alarm has expired.

_ving Group Alarm expired.

Reception of RMP,GRP_CHANGE, RMP Event which notifies about a

_P group members_p change

Reception of RMP_GRP_REFOR.M - RMP Evem which notifies of suc-
cessful reformation.

Reception of RMP_GRP_JOIN - RMP Event which notifies on success-

_ly joining a _ group.

R_eption of _P_GRP_FORM - _ Event which notifies about for-

mation of _ group.

Reception of RMP_GRP_RCVLCK- RMP Event which notifies on

receiving a handler/lock.

Reception of tLMP_GRP_DENLCK - RMP Event which notifies on
denial of a handler/lock.

Reception of RMP_FAILREF- RMP Event which notifies about failed

reformation of a RMP group.

Reception of RMP_ATOMV - RMP Event which notifies about atomicity

violation in the RMP group.

TABLE 3 Description of Events

31

/ •

Design of ROL

3.4.1 Normal Operation of ROL

ii_ I_I_''_I_:!i:

Each site in ROL can be in five possible states Joining Group, Token Site, Not Token Site,

Leaving Group and Not in Group. Each site maintains a list data stnx:ture used by the state

machine called the Membership List, describing the process id, pos_on of the member in

the RMP Token list and state of each member in the group. RMP Token list is identical at

all sites and is used as a serialization mechanism between the ROL process groups. The

members_p is flushed to stable store each time it is changed. A vi_ token ring is imple-

mented in the ROL to do the load balancing among the replicas. The member in Token Site

state is responsible for responding to clients and updating the new members to the current

state of the Objecttx_l. The token is passed among the full membe_ of the group ever),

time a data packet is received. The frequency with which a token is passed can be adjusted,

say after n data packets are received. A _ handler is used as a ROL Token. After servic-

Event Condition Next State Action(s)

Data Packet

RMP GRP CHANGE

RMP GRP CHANGE

RMP GRP REFO_

(none)

next token site

requested the ROL
Token

new member

added to the group

site still has the

token

Token Site

Not Token Site

Token Site

Token Site

(i) Send Token Pass

Packet to next site

on token fist.

(ii) Reply to Packet
if sender is cfient

and needs response.

(none)

Send the s_e of

object group to new
site.

(none)

TABLE 4 Token S_e State

32

Design of ROL

Event

RMP_GRP_REFORM

__GRPjOIN

Condition

site doesn't have

Pass Token Alarm

TABLE 4 Token Site State

the ROL Token

and is not at the

head of member-

ship fist

Next State

Not Token Site

Action(s)

(none)

(none)

(none)

Token Site

Token Site

Send Update Pool
S_ Packet and

transfer the state of

objectpool to new
member

send Token Pass

Packet again.

_ii • :

ing a request from the client or another ROL server, the token site sends Token Pass packet

to next ROL server in the token ring and releases the ROL Token. The next ROL server in

the RMP token ring is determined using the RMP Token list. Upon receiving the Token

Pass packet from the token site, the next ROL server requests for the ROL Token. The Pass

Token Alarm and Recv Token Alarm timers are used in case a request for ROL Token fails.

On expiration of the timers the request for ROL Token is made again. Note that there is a

time difference between the time when token site re_quishes the ROL Token, and the time

when next ROL server gets a token. The first site after relinquishing the ROL Token re-

mains in the Token Site state and continues to service all the client requests till the next

ROL server becomes the token site. _ provides notification events, a

RMP_GRP_CHANGE event to the first site and a tLMP_GRP_RCV_LCK event to the

would be token site. The first site transitions to the Not Token Site state and the wo_d be

token site transitions to the Token Site state. _ese two events are provided ato_cally by

RMP, hence no client request goes unserviced or is serviced twice.

33

(

i!:

! i _

ii ii_iilil_

ji(iiii_i!_)iii_
i_ "i_i •:i :ii : _

D_-_gnof ROt,

R.MP notifies an application with a RMP_GRP_REFORM event when there is a site or a

communication failure in the group and the RMP token ring undergoes successful reforma-

tion. An _ reformation is successful if and only if the ring has the majority number of

members in it and all the members have the same set of packets (and do not have any miss-

ing packets or holes in the OrderingQ). The presence of these packets means ROL has not

lost any data packets during the RMP reformation. After _ reformation, it might be pos-

sible that none of the sites has the ROL token. If the token site has the ROL token then it

con_ues to be a token site. If the token does not have the ROL token then membership list

is _ to decide which site will be next token site. The member which is at the head of the

membership list becomes the next token site. Thus, the vh-tual token ring algorithm is ro-

bust in face of RMP reformation. RMP reformation may take from some seconds to a few

minutes depending upon the TTL value of _e group. The ROL servers would not be able

to respond to requests from clients during this time. Thus, clients may have to resend their

requests.

!iI , i_

A ROL server starts in the Not in Group state. A member transitions to the Token Site state

if it forms an RMP Group, else it transitions to the Joining Group state when it receives _e

Update Pool Start Packet from the token site. Only one member can be in the Joining Group

state at a time because the token site sends all state information to new member after send-

ing an Update Pool Start Packet and only then it wffi service the next new member if any.

The ROL token site transmits the state of the objectpool and the transactions to the member

Event Condition Next State Action(s)

Token Pass this site is the next

token site

Not Token Site try to acquire the
token

TABLE 5 Not Token Site State

34

Design of ROL

_i!i .

i_ii_!_i

..... i_ II _i!i_!i__

Event

RMP_GRP_RCVLCK

RMP GRP FORM

RMP GRP REFORM

RMP_GRP_DENLCK

Recv Token Alarm

Data Packet

Condition

check whether this

site got the token

(none)

no site in _e group
holds the token and

this site is at head

of membership list

If this site has

received token

pass packet and is

the next token site

(none)

(none)

Next State

Token Site

Not Token Site

Token site

Not Token Site

Not Token Site

Not Token Site

Action(s)

(none)

request for the
token

request for the
token

request for the
token

request for the
token

process the packet

TABLE 5 Not Token Site State

Event

Update Pool Start

RMP_GRP_FORM

Condition

(none)

(none)

Next State

Joining Group

Token Site

Action(s)

(none)

request for the
token

TABLE 6 Not inGroup State

in the Joining Group state using an unicast connection. The ROL token site does not pass

the token until it _mits the complete state of object pool to the new member. No other

requests are handled by the token site until the new member receives the complete state of

the object pool. Thus, the new member gets the exact snapshot of the group's replicated ob-

jectpool. The member in the Joining Group (new member) processes the unicast data pack-

ets it receives from _e token site and caches N1 the updates made to the object pool. The

token site sends Update Pool End Packet after sending the complete state of the group to

the new member. After receiving the Update Pool End Packet the new member processes

35

A

H

Design of ROL

all the cached updates in order and transitions to the Not Token Site state. The above men-

fioned method of update is synchronous in nature, no other requests are handled by the to-

ken site until the new member receives the complete state of the object pool. The updates

can also be done in a asynchronous manner, but it would result in more complex token ring

and the recovery algorithms.

Event

Update Pool End

Data Packet

Unicast Data Packet

Condition

(none)

(none)

(none)

Next State

Not Token Site

Joi_g Group

Joi_g Group

Action(s)

(none)

cache the packet

process the packet

TABLE 7 Joining Group

Members in the ROL transition to the Le_ing Group state before leaving the _ Token

ring. A member stays in this state until _ the transactions it has participated in have been

committed.i.e., the two requirements of minimum persistence and majority resilience are

met for all transactions. RMP takes care of the second requirement in its model (if _mber

is in leaving state) but the first requirement has to be taken care of by this layer. Hence a

member has to stay in the RMP ring until the first req_ement of minimum persistence is

met.

Upon receiving the notification from the application, the ROL member sends a state packet

stating that its leaving the object group and transitions to the Leaving Group state. Other

members of the object group update their state lists. All the commits taking place after the

36

Design of ROL

timestamp of the state packet do not take this member into account for persistence. Once

Event Condition Next State Action(s)

Leaving Group Alarm

Leaving Group Alarm

Minimum persis-
tence not met for all

transactions

Minimum persis-
tence met for all

transactions

Leaving Group

Not in Group

(none)

Leave RMP ring

TABLE 8 Leaving Group

the minimum persistence is met for all the transaction commits it has participated in, the

member leaves the RMP ring.

3.4.2 Reformation E_ension of ROL

RMP reformation algorithm fails if majority or more than majori_, of members in the ring

have failed, or if it cannot recover all the packets (the OrderingQ has some holes) during

reformation. The first case is treated as a failed reformation and the application is notified

with the __FAILREF event. The second c_ is treat_ as a ato_ci_ violation and ap-

plication is notified with the RMP_ATO_ event. _ stops all its prcw_essing after failed

reformation or atomicity violation. ROL provides reformation extensions to provide recov-

ery mechanism from RMP reformation failures.

Three more states are added to support the Reformation extension in ROL. The three new

states are the Start Recovery, Reform and Synch Commits states. After a failed reformation

the ROL Server transitions to the Start Recovery state from all normal operation states ex-

cept the Not in Group state. The position of the member in the token list is stored in the

membership list. _e updates are made to the members_p fist only m normal operation

37

• _2 _

!ii !?i!i,_ i_'

H

>

?

Design of ROL

states. The reform site is the surviving member which is at the head of the list and it forces

the formation of the ring. All the other members try to join the ring after a predetermhned

Event Con_tion Next State Action(s)

RMP FAILREF

RMP ATOMV

RMP FAILREF

RMP ATO_

Reform site

Reform site

Not a reform site

Not a reform site

Start Recovery

Start Recovery

Start Recovery

Start Recovery

Reform site forces

formation of RMP

ring

Reform site forces

formation of RMP

ring

: After a predeter-

mined time-out try

to join _ ring

After a predeter-

mined time-out try

to join _ ring

TABLE 9 All Normal Operation States

Event

RMP GRP FORM

RMP JOIN

Condition Next State

(none) Reform

(none) Reform

Action(s)

(none)

(none)

Table 10: Start Recovery State

Event Condition Next State Action(s)

Reform Alarm

Reformation Abort

Synch Commits

Reform site

(none)

(none)

Reform

Start Recovery

Synch Commits

Ping for other

groups, if there
exists one with

greater or equal no.

of member, send

abort request

(none)

(none)

TABLE 11 Reform State

time-out to avoid race conditions. _e time-out is dependent upon the position of the mem-

38

• ,_ ,;,i_ i,/_, _

Design of ROL

ber in the token list. The formula tries to avoid formation of multiple tings by making the

time-out a multiple of time taken to form a ring which is dependent on TrL value of the

time-out = position of the member in the token list saved before failed refor-

mation * timetaken to form a ring (TTL value of the group)

group. But, the formula doesn't entirely remove the race conditions. A random factor

should be introduced to avoid the race conditions.

The ROL member transitions to the Reform state from the Start Recovery state when it joins

or forms the ring. The reform site in the Reform State is the member which is at the head

of the _P token list.The members in the Reform state transition into the Synch Commits

state when the two conditions are met. The first condition is that the majority number of the

ROL members from the old ring should be present, so that only one partition functions after

reformation. The second condition is that one of the members in the reformed ring has all

the co_t messages that have occurred before the failure took place. K we keep the min-

imum persistence in a group fLxed say P where the value of P is between 1 and _ Ma-

jority -1. Then the last tr_saction to be co_tted would have been flushed to at least P

sites. And these P sites have _ the commit messages including the updates made by the

transaction flushed to disk before the last commit message, since we are m_ng the as-

sumption that all the flushes of commits _l be in order of their timestamps. So, for a group

with N members, one of the N P+ 1 sites must have all the commit messages.Hence if

mirdmum size is set to N - P + 1, then the last commit message before the failure is MAX

(PersistenceTSP at all sites). Lets def'me the term Commit Majority as N - P + 1, which is

number of members required to satisfy the two conditions given above.

In the Reform state there are two possib_ties:

39

Design ofROL

(i) Ring has Commit Majority: The membership list contains the state of the group be-

fore reformation. The reform site in the ring will wait till (no. of the members in the

old token list * time taken to form the ring) time so that all the members have exer-

cised their time-outs to join the ring. The reform site will then send Synch Commits

Request packet to the group and all members transition to the Synch Commits state.

(ii) Ring doesn't have a Commit Majority: The reform site pings the other tings with

the same multicast address, port and groupname. If the number of ROL members

(which were in the old ring) present in the other group is greater or equal to the num-

ber of members in the group then it will send Reformation Abort Request to the

group. All the members in the group transition to Start Recovery state.

Event

Umcast NACK packet

Resume Normal Oper-
ation

Resume Normal Oper-

at_ion

Condition

(none)

Reform Site

Not Reform Site

Next State

Synch Commits

Token Site

Not Token Site

Action(s)

Send the commit

(none)

(none)

TABLE 12 Synch Commits State

In the Synch Commits state the members use NACK packets to _ver the missing com-

mits. Once all the members have synched to the co_t synch point the reform site sends

Resume Normal Operation packet to all the other group members to resume normal oper-

ation.

ff all the sites have failed then a special start-up procedure is needed. The start-up procedure

consists of reading the membership lists and the objectpool information from the stable

store to the memory and then transitioning to the Start Recoveo" state. Then the sites use

4O

.....:i _::;_i̧_':_¸¸_'i"'".......:/

_!iiI • _

Design of ROL

the recovery algorithm describeA in the section to recover all the commits and return to the

normal operation mode.

41

Implementation of Replicated Object Layer

Chapter 4 Implementation of Replicated Object Layer

• i

This chapter discusses the implementation details of the Replicated Object Layer. ROL

provides an object-oriented framework to replicate data on multiple sites and across differ-

ent platforms. It provides a type registration layer that allows the application to register

platform independent types. ROL also provides support for performing distributed ato_c

transactions on replicated data. ROL being a roSddleware, provides an application program-

ruing interface for applications to be written on top of it. ROL hides _e burdensome details

of rep_ca consistency operations and makes it _sparent to _e application.

ROL was implemented using C++ [Str86] lan_age. C++ has almost all the important fea-

tures _d in object oriented progran'Hning, and efficient implementations of the C++ com-

piler are available on all the major platforms. The event _ven paradigm was chosen for

implementing the distributed applications on top of ROL. The application constructs a con-

trol loop and passes control to ROL for its internal processing. This scheme allows the ap-

plicafions to have explicit control over when ROL gets to perform its operation. ROL no-

titles the application in form of events.

42

Implemen_ of Replicated Object Layer

4.1 ROL Class Structure

The ROL class structure and modules for the implementation can be divided into three ba-

sic categories"

• Type Registration

• Distributed Transactions

• Application Programming Interface

4.1.1 Type Registration

ROL provides a type registration layer for application to create platform independent types.

Sun's External Data Representation (XDR) [Sun87] is used at the presentation layer to ship

the data across different platforms. XDR was chosen as it is one of the defacto standards

and one has to only do one step conversion _at is convert the data from local machine for-

mat to XDR format and vice versa.

4.1.1.1Type Class

This class is used to register typing information for a replicated object. The ROL supports

the basic types like integer, character, float etc. It also supports the composite types arrays

and structures. The basic types are created and initialized by the ROL system. Once the ini-

tialization is done the user is not able to creme basic types and can only create composite

types. Each type requires an XDR function which encodes mad decodes the data from the

local machine format to XDR format. As of now, the user is required to pass the XDR func-

tion as a parameter w_e creating a type- Sun's RPCGEN compiler is used to simplify the

creation of XDR functions. In future the generation of this function can automatized.

43

.......... /

Implementation of Replicated Object _er

Composite Types

ROL system supports two composite types, arrays and structures. Composite T)q3es of at-

bitrary depth can be created on ROL system, which means that it is possible to creme an

array of structures where ,the structure may contain array members and so on.

Arrays: ROL system supports creating array types. An array type can be created by

specifying the reference or child type of the array and the number of elects

in the array.

Structures: A list of members and their respective offsets in the structure are needed to _ne-

ate a structure type.

4.1.1.2Fie|d Class

Field class is used to describe a field of data in a given type. It specifies the t)q:_e of the

chunk of data and its offset in the object. This class is used in creating structures and, read-

ing and writing data from the replicated objects.

4.1.2 Distributed Transactions

ROL provides applications the capability to perform distributed atomic transactions on rep-

licated data. An efficient locking scheme is provided to preserve the consistency of repli-

cated data in this layer. The lock and update messages on replicated objects are sent to dae

group as totally ordered messages.

4.1.2.1 Lock Class

This class provides multi granular read/write locks on the replicated data. A transaction can

lock the data items depending upon the granularity it operates on. A transaction can lock

part of the data object instead of the complete object. This allows two transactions access-

44

H

Implementation of Replicated Object Layer

ing the different fields of the same object to nm concurrently (or in an interleaved fashion

to be more precise) without blocking one another. For example, two transactions writing

different elements of an army (and assuming their read/write locks don't conflict) can run

concurrently by locking just the array elements (instead of whole array). The Multigranu-

larity Loc_ng (MGL) protocol [BHG 87] is implemented to maintain the consistency of

the data. The lock object defines a lock table for a data type. The implementation of the lock

table is done using trees.

4.1.2.2Update Class

_s class contains the information of which part of an object is to be written or locked/

unlocked, ff the update is a write, then it contains information whether the write has been

applied to the object in memory and stable store.

4.1.2.3CommonLog and Log Classes

The Common Log and Log Classes are the container classes of update objects. All the up-

dates made by the transactions are applied to the objects only when the transaction is corn-

mitted. All the information about the updates is kept in form of Log and CommonI_g oh-

jects. Log object is the log of updates associated with a pamcular transaction. It is imple-

mented as a linked list of updates. The CommonLog is the log of updates going on in an

objectpool. CommonI._g is essentially a hash table of list of updates, hashed by the object

ID. CommonI_g contains the global order of updates made by different transactions in an

objectpool. Log object is provided to implement fast commits as the time taken to access

an update in CommonI_g object is much longer.

4.1.2.4Transaction Class

A transaction can be done on ROL system by using the transaction object. A transactionID

is associated with each _ansaction. All the writes and locks to an object can be associated

4•5

i i,i

Implementation of Replicated Object Layer

tO a transactionID. The consistency of data can be main_ed across multiple sites using

transactions. A transaction can be aborted or committed at the end. The transaction class

contains the Log object and all the updates made by the transaction are logged on to the Log

Object. When the transaction is committed the updates are written to the object else the up-

dates are thrown away. Transaction time-outs can be specified so that the transaction is

timed out after sometime and locks are released. This reduces deadlocks as mentioned in

Section 2.6.1.

4.1.3 Application Prog_ming Interface

4.1.3.1Object Class

The Object class corresponds to the replicated object in ROL. The replicated object con-

tains the type of data, the data itself and lock information on that data. The lock information

for the object is held in the lock table. The object interface allows the user to read from or

write to or lock/unlock data fields of a repficated object. The interface is very transparent

to the user. Each replicated object has a UniqueID called ObjectID associated with it. Since

objects are persistent tl_y are unique with respect to space and time. The Unique_ is made

up of Process ID which uniquely identifies the RMP process in the Internet, current time in

microseconds and a counter to differentiate the objects created in the same microsecond.

The size of the UniqueID is 20 bytes.

4.1.3.2Objectpooi Class

The replicated objects are grouped into pools called Objectpools. Each Objectpool is asso-

ciated wi_ a RMP Group or RMP Token ring. Objects m this pool are replicated to each

ROL Server of this group. It is a container class of objects, transactions and types. _s

class also acts as a communicator class. It also contains t_ commonLog object which con-

46

Implementation of Replicated Object Layer

tains all the updates made to the object. It provides an interface to create objects, def'me
:

types, begin and commit transactions, and register callback functions in the objectpool.

4.1.3.3Client Class

The Clien_ use Mulfi-_ to get information about an object in a pool. The clients don't

store any object information with them and _ object ID's to access objects m the replicat-

ed pools. The client class provides same interface as Objecttx)ol and Object classes for _e

client side. The ROL Token _g _es some seconds to few _utes for refo_on (be-

cause of site and comm_cation failures) and the ROL Servers don't respond to client re-

quests during this time. It" s possible that ROL Servers don't service a client's request. The

clients have to resend requests after some time-out period in such cases. But resending the

requests has also another problem, a server may reply to client's request twice. The client

is made robust to handle these failures.

4.1.3.4ROLEvent Class

_e ROL layer uses ROLEvent to notify the application about _e changes made by other

sites in the replicated objectpools. These events are generated when:

• object or type is created or deleted.

- an update is made to an object.

• a lock is released or acqu_ed.

• a transaction is started or committed.

Some of the calls in the ROL API are asynchronous in nature. _e events are _ to notify

the application upon success/failure of an operation using RO_vents. _e ROLEvents

47

Implementation of Replicated Object Layer

also give additional information to the appfication. For example, when an object is created,

the pointer to object is returned to application.

4.2 An Example: A Simple Replicated Database Application

This section describes a simple replicated database application implemented on ROL. This

application stores employee records. The application main_s a linked list of employee

records.

The application creates an ObjectPool object as the fi_rst step. The RMP groupname or IP

multicast address of the group, TI'L value of the group, fault tolerance of the ring and a flag

(specifying whether to form a group or join an _dy existing one) are given as parameters

to the constructor of ObjectPool object. The fault tolerance of the ring is _mum number

of members that should be present in the _g for the reformation to be successful. Depend-

ing upon the flag given to the constructor an RMP ring is formed or an already existing ring

is joined. The application should give control to the ROL regaxlarly to do its internal pro-

cessing. This is done by using an event loop style of programming similar to X-Windows

[SWG86]. In the event loop the application gives control to ROL and can do part of its pro-

cessing. The ROL does its internal processing and notifies application using ROL Events.

The application can set callback functions to be invoked upon notification of a ROL Event.

Our application sets appropriate callback functions to be invoked by ROL.

Now that application has joined a ring, its time to define types to be used by it. Let's say

employee record is a structure type with employee's name (a _ character array), employ-

ee's age (an integer type) and _ary (a float type). The appfcations access the types and

objects using their UniqueIDs. One way of sharing types and objects by the application at

different sites is to negotiate or decide the values of UniqueID's at the compile time. An-

48

• : q , •

ImplementationofReplicatedObjectLayer

other way of sharing objects which is at run time is by having application keep a map from

UniquelD to a field in the object. Both the methods are used by _ example. Two types

(name array and the e_loyee structure) are def:med using two UmquelDs known at com-

pile time. These two tH_es are defined by the member that forms the group. The other mem-

bers that join the group need not define these types.

Now that the types have been defined, its time to create replicated objects in the group. An

object can be created by invoking the createObject function in the ObjectPool object and

passing the ID of the type which is employee smlcture here. The ROL system retums the

ID of the object. The application can now wwite to the replicated _i_t using write opera-

tions, so the name, age and salary fields are written appropriate v_ues. The application

keeps the mapping from ID of the object to name of the employee.

Lets assume _at application running on site A formed a group and created an employee

object for employee named Sam. Then, the application panning on site B joins the group.

It receives _ the types, objects and updates made to the objects m _ goup _d all this is

transparent to the appgcation. The application is notified about the new types, objects and

updates in form ROLEvents. When the site B receives the object c_ed at site A, the ROL

notifies the application at site B with ROL_CREATE_OBJEC_ event. The callback func-

tion which was registered for this event is invoked. In this function _ application gets the

other information from the event which is the object itseff. The app_cation at site B reads

the name of the employee from the object _ing read operation .and keeps a map between

the object and the name. Now, both the sites A and B have and know about _ employee

object with the name Sam. Any changes made by the appfication o_ site are notified to the

applications at other sites, ff site B makes an updae to age field f_ the Sam employee ob-

49

Implementation of Replicated Object Layer

ject, it is sent as totally o_ed messages to the group and the application at other sites are

notified with ROLEvent ROL WR1TE.

For more complex updates, distributed transactions provided by ROL can be usext. Let's

assume that application on site A and site B attempt to make updates to the Sam object si-

multaneously. Both site A and site B can begin a transaction and try to get locks on Sam

object. If site A succeeds in getting the lock for the Sam object then site A is notified _r,out

the success and site B is notified about failure using ROL_LOCK event. Site A has exclu-

sive access to the Sam object, makes writes to it and commits the transaction. Site B can

either abort the transaction or wait for some time before requesting for lock on Sam o_xzt

again.

create objectpool // form or join a RMP token ring and get the state

//of the objectpool if a ring is joined

register calIback functions for ROLEvents

//event loop

while (not done)do

od

give control to ROL// for ROL internal processing. ROL

//makes callbacks on receipt of ROLEvents

do appfication processing//can make RMP API calls

call objec_l destructor

Figure 6 ROL Server pr_ure

The figure 6 shows a sample server procedure. An object_l is created and the _lmck

5O

H

i_ii_/ i__I

i i i iii!i_I_IIII_

i i_ i_i_ •

Implementation of Replicated Object Layer

functions for certain ROLEvents are registered. The application _en enters an event loop.

The control has to be given to ROL in the event loop for its internal processing. ROL makes

appropriate c_backs upon the reception of ROLEvents. The application can do its process-

ing in the loop, but should return the control to ROL as soon as possible. The figure 7

i__

_? i i__:ii

create a client object//establish connection to a _ token ring

define types, create objects in the object server group

begin a transaction

make updates to the objects//objects are accessed using their ID's

commit the transaction

Figure 7 ROL Client Procedure

describes the sample ROL client procedure. A cfient object is created to establish connec-

tion to a _ token ring. A client can then define types and create objects. The server

group reds ID' s of the types and objects created to the clients. The clients access the ob-

jects m the server group using their ID' s. A client can do updates on the objects and perform

distributed transactions.

The application doesn't have to do any work m case of site failures, the reformation is hart-

died transparently by the ROL. Let's assume that application is running on thee sites A, B

and C and fault tolerance of the group is set to majority which is 2 in this case. If site B

fails, _e _g undergoes reformation and ROL recovers transparently to the application.

51

VerificationofROL

Chapter 5 Verification of ROL

This chapter describes the approach taken to verify the ROL using the SPLN tool. A SPIN

model is developed for ROL to check the consistency and correcmess of its state specifica-

tions.

5.1 SPIN Tool

SPIN [Holtz94] is a tool for analyzing the logical consistency and general verification for

proving correctness properties of distributed and concurrent systems, especiMly for data

communication protocols. _e system is described in a modeling language called PROME-

LA. SP_ provides support for processes which exchange messages through communica-

tion channels. Communication via message channels can be defined to be synchronous(i.e.

rendez-vous), or asynchronous. The language allows for dynamic creation of processes.

The protocol system is described as a group of processes running at their own rate, ex-

changing message through communication channels. Each process can make transition

based on state variable values and channel event and produce output to other processes'

communication channels.

52

i__iI i

"i_ilil i ii__!i !

i;ilJl_I:,:'',fill!_'

VerificationofROL

Given a model system in PROMEL& SPIN can either perform random simulations of the

sesames execution or it can generate a C program that performs a fast exhaustive vali_on

of the system's state space. _g simulations and vali_ons, SPIN checks for the ab-

sence of deadlocks, un__ed receptions and mexecutable code. The validator can also

be used to verify the correcmess of the system mvariants _ified as never clauses, and it

can find non progress execution cycles and livelocks. SPIN has adopted some advan_ al-

gorithms to address the state explosion problem. Users can use either state reduction _go-

rithm or bit-state reduction to perform the best possible search in the case of state e_lo-

sion.

5.2 SPIN Model for ROL

The SPIN tool is used to construct a multiple site interaction model. The model dec_79els

interaction between ROL processes at multiple sites and a tLMP process providing _ re-

liable mulficast comm_cafion to _ ROL processes. The ROL processes communicate

with each other using ROL Con_ol Packets. The ROL processes communicate with RMP

process using the RMP API _s and _ process respon_ back by sending appropriate

RMP events to ROL processes. The ROLEvent queue and RMP API call queue are rood-

eled as communication channels. The states of ROL processes, the number of sites _ the

token ring and the current tokensite are stored as state variables.

The model works as follows. Upon the reception of _ ROLEvent and a condition _ing

true a ROL process may _sition to another state and may revoke an action(s). The a_ons

are the RM.-P API calls posteA to _ process's co_unication channel. _e RMP p_ess

polls the RMP _I c_s from the RMP API _ queue. The _ process does the a_ro-

priate processing (i.e, _e c_ges to the values of state variables in the process) r_d

53

. _i_• _

VerificationofROL

by the API call and then posts appropriate RMPEvents to the ROL processes. The ROL

processes can also post unicast ROL Control packets to each other.

An example is given to demonstrate the functioning of SPIN model for ROL. Consider a

model wi_ two ROL processes A and B. Let's assume process A is in the Token Site state.

Upon reception of ROL Data packet from process B, process A attempts to pass the token

to the process B by posting Token pass packet in it's ROLEvent queue and releasing the

ROL token using the appropriate RMP API call. The process B upon the reception of Token

ROLEvent Queue

IIII -1
ROLEvent Queue

llll---1

ROL PROCESS ROL PROCESS

RMP API Call Queue

RMP PRESS

Figure 8 SPiN modelfor ROL

pass packet posts appropriate RMP API call to get the ROL token. RMP process polls the

API calls from the queue, processes them and posts appropriate ROLEvents in the ROLEv-

54

Verific_o,, of ROL

ent queue. It posts RMP_GRP_CHANGE and RMP_GRP_RCVLCK events respectively

in both the processes' event queues. The processes A and B switch to the Not Token Site

and Token Site states respectively upon the reception of RMP_GRP_CHANCE and

RMP_RCVLCK events. RMP process must generate the RMPEvents corresponding to

RMP API calls. The correctness of the SPIN model depends upon the correctness of the

mapping from RMP API calls to RMP Events.

Thus, the multiple site interaction model can be simulated using the SPIN tool

can be made for system invariants, deadlocks and livelocks.

and checks

55

Conclusions and Future Work

Chapter 6 Conclusions and Future Work

This chapter draws some conclusions about the ROL's design and implementation. It pre-

sents an outline for possible future research.

6.1 Conclusions

Presented in _s document are the design and implementation aspects of the Rephcated

Object Layer. To summarize:

• An object oriented framework for replicating data on multiple sites and across

different platfo_ is presented.

The system frees applic_on from burdens of performing replication consisten-

cy and fault tolerance protocols for maintaining the consistency of data. The

system does all the work which is completely transparent to the application.

A comrrdt protocol to commit transactions efficiently in the RMP environment

is presented.

The algori_ for membersMp changes in the group, virtual token ring and re-

covery are specified using fimte state machine approach.

56

Conclusions and Future Work

/) :_ii:_i_i;i_ i:

;,i/_ i:i ;ii

• Reliable Multicast Protocol provides excellent support for building fault toler-

ant applications.

6.2 F_ure Work

The _ectio_ for further work are:

• ROL provides strong consistency model for replicating data using totally or-

dered updates and distributed atomic transactions. A weaker consistency model

could be developed giving unique id's to updates and using a negative acknowl-

edgment scheme for missing updates.

• Some optimizations and improvements can be made to algorithms presented in

ROL.

Virtual Token Ring algorithm can be improved by using multiple handlers

provided by RMP, instead of the one hanNer being used currently.

Recovery algorithm can be improved by introducing randomness in the

time-outs used in Start Recovery state.

• Update of the objectpool state to a new member can be made asynchronous.

A transaction flow control mech_sm can be _veloped wherein the amount of

updates taking place in the ring and the speed of stable store processing can con-

trol the rate of transactions.

57

i!_ . 5

ii •

Bibliography

Bibliography

[BHG87] P.A. Bemstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-

covery in Database Systems. Addison Wesley, 1987

[Bir931 The Process Group Approach to Refiable Distrib_ Computing. Communica-

tions of ACM', 36(12):37-53, December 1993.

[CM84] J.M. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. A CM Trans-

actions on Computer Systems, 2(3):251-273, Aunt 1984.

[Deer89] S. Deering. Host Extension for IP Multicas_g. Tec_cal Report RFC-1112,

IETF, June 1988.

[EGL_6] K.P. Eswaran, J.N. Gray, R.A. Lorie and I.L. Traiger. The Notion of Consisten-

cy and Predicate Locks in a Database System. Communications of ACM, Vol.

19, No. ! 1, November 1976.

[Gray78] J.N. Gray. Notes on Database Operating Systems. In Operating Systems: An

Advanced Course, Lecture Notes in Computer Science, volume 60, pages 339-

481. Springer-Verlag, Berlin, 1978.

[Hans.] Erikson Hans. "MBone" The MuIticast Backbone". Comm_ications of the

ACM, August 1994, Voi.37, pp.54-60.

[Holtz94] G.J. Ho!tzman. Basic Spin Manual. AT&T Bell Laboratories, Murray Hill, New

Jersey, 1994.

[Lit91] Mark C. Little. Object Replication in a Distributed System. Ph.D. Thesis, Uni-

versity of Newcastle Upon Tyne. September 1991.

[MCVV95] T. Montogomery, B. Whetten & J. Callahan. "'The Reliable Multicast Protocol

Specification", West Virginia University, Morgantown, October 5, 1995.

58

Bibliography

[Mont94] T.Montgomery. Design and Implementation, and Verification of Reliable Mul-

ticast Protocol. MS thesis, Department of Electrical and Computer Engineering,

West Virgina University, Morgantown 1994.

[Moy941 J. Moy. Multicast Extensions to OSPF. Technical Report RFC-1584, IETF, Mar

1994.

[Ske82] D. Skeen. A Quorum-Based Commit Protocol In Berkeley" Workshop on Dis-

tributed Data Management and Computer Networks, number 6, pages 69-80,

February 1982.

[ss83] D. Skeen and M. Stonebraker. A Formal Model of Crash Recovery in a Distrib-

uted System. IEEE Transactions on Software Engineering, SE-9 No. 3,May

1983.

[Sun87] Sun Microsystems 1987, "XDR: External Data Representation Standard". RFC

1014, 1987.

[SWG86] Scheifler, Robert W. and James Gettys. "The X-Window System". ACM Trans-

actions on GrapNcs, No. 5, p_es 79-109, April 1986.

[Str86] B. Stroustmp, "The C++ Programming Language", Addison Wesley, 1986.

[WPD88] D. Waitzman, C. Partridge and S. Deering. Distance Vector Multicast Routing

Protocol. Technical Report RFC- 1075, IETF, November 1988.

59

Appendix: The Replicated Object Layer API

APPENDIX The Repficated Object Layer Application

Programming Interface

The Replicated Object Layer(ROL) is an object oriented service for replicating objects in

a distributed system. ROL provides basic object t'j-_ re_stration and the capability to cre-

ate and update the replicated objects. ROL provides basic transaction capability through

multi granular read/write locks on tl_ individual fields of an object and maintaining a log

of updates. ROL uses the Reliable Multicast Protocol(RMP) as communication protocol

that provides for reliable delivery, serialization and casual ordering. In ROL, objects are

grouped into object pools that are replicated across a se_ of processesat different sites in a
network.

This layer provides user a basic typing facility to create _pes. These types are used to cre-

ate replicated objects using Object and ObjectPool classes. Each replicated object is asso-

ciated with an UniqueID. Since these objects are persistent the UniqueID is made unique

with reset to space and time. ROL uses the XDR Nncfions to sNp the data across differ-

ent platforms. The fields of an object can be updated by read and write operations. The

write o_ration makes updates on _ copies of the object whereas the read operation reads

the local copy. The transactions can be implemented on repficated objects using the Begin-

Transaction and EndTransaction operations. The locks on inNvidual fields on an object can

be acquired using the lock operation. The transaction can be committed or aborted using

EndTr_sacfion operation. A log of updates is kept for each Object in an ObjectPool which

are used to implement the transactions.

ROL has two kinds of members, servers and clients. _e servers of a group maintain the

object pools for that group. The clients of a group do not belong to that replicated object

group and do not maintain the object pools for th_ group. They use one of the servers to

do transactions on an object. A vimaN token ring is implemented in the ROL layer to handle

the client requests and new servers. A token is passed around the ROL servers and the to-

kensite handles the client requests and brings a new member to state of the group transpar-

ent to the application. ROL is an event based sy_em that notifies the application using

events and provides asynchronous non-blocking calls.

6o

Appendix: The Replicated Object Layer API

TYPF_ AND CLASSES

Various types and classes in ROL API:

CI_:

Type- Type object containing information of a type.

Field- Field object containing information about a field in an object.

Object- replicated object

ObjectPool -Container for replicated objects. ROL control object for

servers

Client- ROL control object for clients.

ROLEvent- no_es application of asynchronous events.

Pointers:

TypePtr- pointer to Type object.

FieldPtr- pointer to Field object.

St_ctures:

xdrFuncptr- bool_t (*)(XDR *, Value, TypePtr);

UniquelD - Unique ID for replicated objects. ,_so _d for types and transactions.

struct UniquelD {

struct tLMPProcID procID;

struct timeval time_vaI;

short count;

};

Value -

typedef union

61

Appendix: The Replicated Object Layer API

void *ptr,

void **dptr,

}Value;

OBJECT CLASS

The Object class represents the replicated object. It contains the data of the replicated

object, the type information and locks for various fields, of the object.

Cons_ctor and Destruc_r

Access is not given to the constructor and destructor of Object Class as ObjectPool class

manages Object class objects. Obj_tPool Class provides createObject and deleteObject

functions to create and delete objects respectively.

Reading a field of an Object

int Object::read(Field field, void *value)

int Object:'read(Fieid field, void **value)

Description: This function is used to read a member from a local object. The second ver-

sion is used to read a _mber whose XDR function needs a double pointer to be passed to

it.

Arguments: The first argument is the field of the member to be read and the second argu-
ment is the address of the variable _e value of member is read into.

Returns:

Code

ROL OK

ROLEXDRDE

"value Description
17;

success.

XDR Dec_g Error

NOTE: The user should make sure that memory is allocated for the second argument before

calling the read function.

Writing a field of an ob_iect

int Object::write(Field field, void *value, UniquelD _id=NULL)

int Object::write(Field field, void **value, UniquelD *tid=NULL)

62

x

Appendix: The Replicated Object Layer API

Description: This function is used to write a member on all copies of an object when the

_te is not associated with any transaction(rid is N2JI.L). _n associated with a transac-

tion the write will add the update to the log which will be committed or aborted at the end

of _ansaction. The second version is _ to write a member of type array to a local object.

Arguments: The first argument is the field of member to be v,a-itten and the second argu-

ment is _ address of the variable whose value wffi be _si_ed to the member. The tid is
the tr_fion ID of the transaction this _Tite is associated with.

Returns:

Code Val_ _scription

ROL OK 1 success

ROL_EXDREN - !01 XDR _c_g Error
.........

ROL_EXDRDE - 102 XDR Dec_g Error
....

ROL _MSG -103

-202
.......

ROL EOFF

Error _n_g tl_ message to other ROL
Servers.

Negative offset specified in the field.

Acquiring or releasing a lock on a iTeM of an object

bool Obj_t::fieldlock(FieldPtr field, UniquelD *tid)

Description: _s function is used to lock a mem_r of an object. _e field is not locked if

it and its sub members are not locked by any other transaction. This is an asynchronous non

blocking _1. The result of the lock operation is n_ed by _e ROL_LOCK event.

Arguments: The first argument is the field of a member to be l_ked and the second arg-u-
ment is the ID of the transaction.

Returns:

Code

ROL OK
,,,

ROL EXDREN

ROL _RDE

ROL ESMSG

ROL EOFF

Value

-101
....

-102

-103

-202

Description

SU_

XDR Enc_g Error

XDR Dec_g Error

Error _n_g tt_ message to other ROL
Servers.

Negative offset specified in _e field.

63

Appendix: The Replicated Object Layer API

Object Access Methods

UniquelD *Object::getlD0

Description: returns tie Object ID.

Arguments: none

Returns: ID of the object.

OBJECTPOOL CLASS

The ObjectPool object is the container of replicated objects. Each ObjectPool is associated

with a RMPGroup. It uses the RMPGroup object for group commtmication whose name is

the argument to the constructor. An ObjectPool is a pool of objects. It is the unit of repli-

cation in Replicated Object Layer. It also maintains the details of transactions.

Constructor .and Destructor

ObjectPool':ObjectPool(RMPGrouplD *grpid, RMPProclD *proxy, n_char ttl,

n_char minsz, n_long flags, struct RMPopts *optvals)

Description: Creates an Objec&ool object.

Arguments: Same as for MLRGroup::Join method. When proxy is NqALL it reduces to

shorter version of _RGroup: :Join method, tf MLRComrolLoop object is not initialized

using ObjectPool::init method, it is done now before creating a new group.

Error Codes: Static member ObjectPool:'_sermo will be set to proper error code.

Code Value Description

ROL OK 1 success

ROL_EARG - 105 grpid is NULL

ROL EXDRDE

ROL _MSG
I

other codes

-403

-405

ObjectPool with that groupid already in
existence

Error initi_g the _ object

returned by _Group::Join method

--ObjectPool :'ObjectP oo!0

Description: Destroys _e ObjectPool object.

64

H

Appendix: The Replicated Object LayerAPl

Arguments: None.

Error Codes: Static member ObjectPool:'_sermo will be set to proper error code.

Code Value Description

ROL OK 1 success
.....

other codes returned by MLRGroup::leave meth_
.......

In_lizine a RMP _ess

static int ObjectPool':init(struct RMPProclD *id, n_iong flags,

n_long mask = O, char *file = "stderr'')

Description: _s function initializes the MLRContro_p Object. It must be called only

once.

Arguments: Same as MLRGroup::init method

Returns:

Code Value Description
.,, ,,,

ROL OK 1 success

ROLEALLOC -4_ grpid is NULL

ROLEDEL

t ROL EBUF

ROL EINDN

other codes

-402

-413

ObjectPool with that groupid already in
existence

Error imti_ing the _ object
,.

initialization already done
, ,,

returned by MLRGroup::init method

The following are the possible err_ codes that can be set by the remaining meth_ in this

class. Many of the error codes are common to most of the methods. Hence they are not list-

ed individu_y for each _ction.

Possible Error Codes: Member ObjectPool::_errno wffi be set to proper error code.

Code Value Description
,,

ROL_EXDREN - 101 XDR Enc_ng Error
...........

65

Appendix_ The Replicated Object Layer API

i:

_ _i__ :_

Code

ROL EXDRDE

ROL ESMSG

ROL EARG

ROL EOBJEX

ROL EOBJNEX

ROL ETNEX

ROL ETYNEX

ROL ET_X

ROL EREFNEX

ROL EFOFF

Value

-102

-103

-105

-406

-407

-409

-410

-411

-412

Description

XDR Dec_g Error

Error sending the message

Inv_d arguments passed to the method
.......

Object already exists
, ,

Object doesn't efist

Transaction d_sn't exist

Type doesn't exist

Type exists
,,,

Reference Type doesn't exist

Field offset is negative

Defining a t)T_e

T_ePtr ObjectPool"defineType(kind op, int sLze, char *tag, FieldPtr flist,

TypePtr ref, xdrFuncptr xdffunc, UniquelD *type_id - NULL,

xdrproct xdrchildproc- NULL)

Description: This Nnction is used to create a type.

Arguments: op is the kind of type(described in Type::fmdtype function), tag is used for

structures to distinguish two with same size. flist is the list of members in a structure, ref is

the child type for arrays and xdrchildproc is _e XDR function for that t3T>e, xdffunc is the

XDR _ction for the type. A type_id can also be passed if type_id is known beforehand.

Returns: Pointer to type on success else _L.

Error Codes: See the possible error codes above and the error codes returned by Type:'init
method if the return is NULL.

Geta'ng reference W an already existing type

TypePtr ObjectPool'" getType(UniquelD *type_id, int op)

Description: This function is used to get a type from the ObjectPool.

Arguments: ID of the type and kind(refer to Type::init method) of type.

Returns: Pointer to type on success else NULL.

66

• i:: ¸

2

App_-ndix: The Replicated Object Layer API

Error Codes: See the possible error codes above if return is I'_.

Deleting a Type

int ObjectPool::deleteType(UniquelD *type_id, int op)

Description: This function is used to delete a type from _ ObjectPool.

Arguments: ID of the type and kind(refer to Type::init method) of type.

Re_: ROL_OK on success else ROL_ERROR.

Error Codes: See the possible error codes above if retm-n is ROL_ERROR.

Creating an object in a ObiectPool

Object *ObjectPooi':createObject(TypePtr type, UniquelD *object_id = NULL)

Description: This function is used to create an Object in the ObjectPool.

Arguments: The type of the object and the object ID(optional, if not specified ROL gener-

ates a UniquelD).

Returns: The pointer to Object created if successful. NULL in case of failure.

Error Codes: See the possible error codes above if return is NULL.

Ge_ng reference to an object given its ID

Object *ObjectPool::getObject(UniquelD * object_id)

Description: T_ function is used to get an Object in the ObjectPool given its ID.

Arguments: the object ID

Returns: The pointer to Object created if successful. NULL in case of failure.

Error Codes: none

Deleting an Object from a ObjectPool

int ObjectPool::deleteObject(UniquelD *object_id)

Description: _ function is used to delete an object from the ObjectPool.

Arguments: ID of the Object.

Returns: ROL_OK on success else ROL_ERROR.

67

:' :...... :: i¸......... :..... !i _ • _i: _¸-

:<

i <!_:!i i_

Appendix: The Replicated Object Layer APl

Error Codes: See the possible error codes above if return is ROL_ERROR.

To start a transaction

UniquelD *ObjectPool" :beginTransaction0

Description: This _nctions is _ to start a transaction.

Arguments: none

Returns: ID for the transaction on success else NULL.

Error Codes: See the possible error codes above if return is ROL_ERROR.

To end a transac_n

int ObjectPool::endTransaction(UniqueID *tid, bool commitflag)

Description: This function is use_ to commit or abort a transaction.

Arguments: The tr_saction ID _ commit_flag whose value should be TR_ to commit
and FALSE to abort.

Returns: ROL OK on success eke ROL ERROR.

Error Codes: See the possible error codes above if return is ROL_ERROR.

Granting Control to RMP

ROLEvent *ObjectPool:'poll0

int ObjectPool:'select(int width, fd_set *inreadfds, fd_set *inwdtefds,

fd_set *inexceptfds, struct timeval *timeout)

Description: These _ctions are _ed to give control to RMP. The control must be returned

to RMP regularly by calling these functions. All the ROLEvents to the objectpool are stored

in FIFO queue. The poll method returns the ROLEvent in front of this queue.

Arguments: Same as for MLRC_trollxrop::select and MLRControllxx)p methods

Returns: Same as for _RContrel_p::select method. The poll method returns ROLEv-

ent object.

Registering callback_functions _dth ROL

int ObjectPool::setEventHan_rs(ROLEventType, void (*func)(ROLEvent *))

Description: This _ction is used to set c_back functions for a given event type.

68

..... _/••! :• • • <:_i.......i......>ii:............<:/'<•:•'i_'¸¸¸

ii _

Appendix: The Replicated Object Layer AP!

i; :

Arguments: The first argument RO_ventType defines type of the ROLEvent.

ROLEventType

ROL_CREATE_T_E

ROL CREATE OBJECT

ROL WRITE

ROL DELETE OBJECT

ROL_BEGIN_TRANSA_ON

ROL END TRANSACHON

ROL TRANS WRITE
m

ROL LOCK

CALL ALL ROL EVEaNTS

Description

a type is created m the objectpool

an object is created in the objecttx)ol

an update is made on an object in the objectpool

an object is deleted from the obj_tpool

a transaction is began in the objectpool

a transaction is ended in the objectpool

an update associated with a particular transaction is

made in, the objec_l

a request is made to acquire or release locks in the

objecqx l

all the events above

:i

The second argument is the pointer to event handler.

Returns: ROL_OK on success else ROL_ERROR for invalid event t3T_e.

Error Codes: none

Reclaiming a ROI_vent

int ObjectPool"reclaimROLEvent(ROLEvent *event)

Description: This function reclaims the ROLEvent object. This function must be c_ed on

each ROLEvent returned to application by ROL, else the same event is returned backed to

application causing error.

Arguments: ROLEvent object

Retums: ROL OK on success else ROL ERROR

Error Codes: none

Ge_'ng access to com'rol object in Messa_ng Layer

ML RCon trolLoop * Obje_Pool": retu mCont rotO

Description: _is function returns the MLRControlLoop object if the application n_ to

access the MLRControlLx)op interface.

69

Appendix: The Replicated Object Layer API

Arguments: none

Returns: MLRControlI.x_p object

Error Codes: none

Accessing error codes

int ObjectPool::perror0

Description: This function returns the value of_errno member.

Arguments: none

Returns: value of ermo

CLIENT CLASS

The methods of client object are very similar to that of ObjectPool object. In addition the

read, write and lock operations are provided by the client since clients don't have any per-

sistent objects.

Constructor and Destructor

Client(MLRControlLoop *control, struct RMPGroupID *id, stm_ RMPProclD

*proxy, n_char ttl, n_long flags, struct F{MPopts *op_als)

Description: Creates an ObjectPool object.

Arguments: Same as for MLRGroup::MRPCconnect me_od. When proxy is ,NULL it re-

duces to shorter version of MLRGroup::M1LPCconnect method.

Error codes: none

_e following are the possible error codes that can be set by the remaining methods in this

class. Many of the error codes are common to most of _ meth_s. Hence they are not list-

ed individually for each _nction. The errors could have occu_ on chent or server sides.

Possible Error Codes: Member Client:'_ermo will be set to pro_r error code.

7O

Appendix: The Replicated Object _ API

Error codes for errors on the _t:

Code

ROL ERMSG

ROL EMFAIL

ROL ESMSGS

ROL EXDRENC

ROL EXDRDEC

Value

-501

-5O2

-503

-5O4

-505

Description

Error receiving message from the server

Failed to receive reply from the server

Error sending message to the server

. XDR Encoding error on cfient side

XDR Dex:_g error on cfient side

Error codes for Errors on the Server:

Code

ROL EXDREN

ROL EXDRDE

ROL_ESMSG

ROL EARG

ROL EOBJEX

ROL EOBJNEX

ROL ETNEX

ROL ETYNEX

ROL_ETYEX

ROL EREFNEX

ROL EFOFF

Value

-I01.

-I02

-t03

-i05

-409

410
....

411

-412

Description

XDR Encoding Error

XDR Decoding Error

Error sending the message

Invalid arguments passed to the method

Object already exists

Object doesn't exist

Transaction doesn't exist
......

Type doesn't exist
........

Type exists

Reference Type doesn't exist

Field offset is negative

The methods of cfient object are very s_lar to that of ObjectPool object. In addition the

read, write and lock operations are provided by the client since clien_ don't have any per-

sistent objects.

TypePtr Client::defineType_nd op, int size, char *tag, FieldPtr flist,

TypePtr ref, xdrFu_tr xdrfunc)

7I

?

Appendix: The Replicated Object Layer API

TypePtr Client:'getType(kind op, int size, _r *tag, FieldPtr flist,

TypePtr ref, xdrFuncptr xdrfunc, UniquelD *id)

TypePtr Client"deleteType(Unique ID *id, kind op)

UniquelD *Client: :createObject(TypePtr type)

int Client::deleteObject(UniquelD *id)

int Client::read(UniquelD *id, FieldPtr field, void *value)

int Client:" read(UniquelD *id, FieidPtr field, void **value)

int Client::write(UniquelD *id, FieldPtr field, void *value, UniquelD *tid=NULL)

int Client:" write(UniquelD *id, FieldPtr field, void **value, UniqueiD *tid=NULL)

int Client::fieldlock(UniquelD *id, _eldPtr field, UniquelD *tid,

bool lock_flag = TRUE)

Un iq ueiD *Client': beg inT ran saction 0

int Client::endTransaction(UniquelD *tid, bool commit_flag)

int Client::perror0

ROLEVENT CLASS

Constructor and Destructor

Access not given to the constructor and destructor of ROLEvent Class as ObjectPool class

manages ROLEvent class objects.

Access Methods

ROLEvenffype ROLEvent':type0

Returns the event type(refer to ObjectPool'" setEventHandlers function

ObjectPool * ROLEvent: :objpool0

Returns the objectpool the event is associated _ith the event.

Un iq ue ID * ROL Ev ent: :type I D 0

Returns ID of the type if any associated with _ event

72

/

.ii_ :

H

• : :(

(

i !_i_I..... (i_

_ii!__')I :i: _ili_,

Appendix: The Replicated Object Layer API

UniquelD *ROLEvent::objectlD0

Returns ID of the object if any associated with tt_ event

Un iq u e I D * ROLE vent: :t rans ID 0

R_s ID of the transaction if any associated wi_ the event

FieldPtr ROLEvent::field()

Reds the field of the object if the event is an uIxlate or lock event

int ROLEvent::retumValue(Value value)

Passes the vah_ of the update in case of an update event, returns ROL_OK on success else
ROL ERROR

int ROLEvent::status()

Returns the sta_nas of the event

int ROLEvent::op0

Returns the operation mode in case of lock event

Value Description

0 R_uest for releasing the lock
L

1 Request for acquiring the lock

_E CLASS

Constructor and Destructor

The Type object constructor does not do any initialization. The init0 method does the ini-
tialization.

In_lizine the: type table

static int Ty_':typelnit0

Description: _s _ction initializes the type table with basic types. This method must be

called only on_ce in the program and before creating any type.

Returns: ROL_OK if successful else returns a negative number.

The pointers to basic types created are chartype, doubletype, floatype, inttype, longtype,

shorttype, un.s'ignedchar, unsignedlong, unsigne_hort, _ignedint.

73

,:iii__:,_i__!:_i)I_
:!_i_ii_)i: _

__ _ii__

Appendix." The Repl_ Object Layer API

The prototypes of XDR functions for basic types are"

bool_t xdrcharFunc(XDR *, Value, TypePtr);

bool_t xdrintFunc(XDR *, Value, TypePtr);

bool_t xdrshortFunc(XDR *, Value, TypePtr);

boo/t xdrlongFunc(XDR *, Value, T_Ptr);

bool_t xdruintFunc(XDR *, Value, TypePtr);

booi_t xdrucharFunc(XDR *, Value, TypePtr);

bool_t xdrushortFunc(XDR *, Value, TypePtr);

booi_t xdrulongFunc(XDR *, Value, TypePtr);

booi_t xdrfloatFunc(XDR *, Value, TypePtr);

bool_t xdrdoubleFunc(XDR *, Value, TypePtr);

IniP_alizine a type obiect

int Type::init(kind op, u_int size, char *tag, FieldPtr flist, TypePtr ref,

xdrFuncptr xdrfunc, UniquelD *id, xdrproc_t xdrchiidproc = N ULL)

Description: This _ction initializes the Type object.

Arguments:

op describes various kinds of types supported by ROL.

op

CHAR

SHO_

INT

DOUBLE

FLOAT

LONG

2

value op

UCHAR

.. USHORT
,,

ULONG

ARRAY

STRUC_

value

10

11

Size is the size of the type, tag is the character string upto 80 characters in length used to

identify different s_c_es having same size, flist is the list of fields in a structure, ref is

?4

Appendix: The ReplicatedObjectLayerAPI

the reference type in an array, xdrfunc is the XDR function for the type, id is the identifi-

cation for the type and xdrchildproc is the XDR function for the reference type in case the

type is an array.

getunls"

Code

ROL OK

ROL EINVOP

ROL ETEXISTS

ROL_EBKIND

ROL ESIZE

ROL EFLIST

ROL EREF

Value

-301

-302

-303

-304

-305

-306

Description

success

inv_id op for the type

type _dy exists

type is a basic kind. Basic types are created

o_y once during initialization. Only com-

posite t)_)es and arrays can be created later.
.....

size is negative

_t m_ent is NULL while creating a

structure type

ref ar_nt is NULL while creating an

array type

Ge_ng reference of a type _ven i_ 119

TypePtr Type::findType(kind op, UniquelD *id)

Description: This function returns the tTpe given the object kind and its id.

Arguments: op is the kind of type(description given m the above _ncfion), id is the ID of

the type.

Returns: TypePtr if type available, else NULL.

Setting a XDR function for a _tw_e

void Type::addxdrfunc(xdrFuncptr xdrfunc)

Description: This function is used to add XDR function to the type object after it has been
created.

Arguments: pointer to XDR function.

Returns: none.

Member access methods

75

, ./:i ::¸ /:./,:

Appendix: The Replicated Object Layer API

u_int Type::sizeO

Returns size of the type

int Type':op0

Returns kind of type

TypePtr Type::ref0

Returns the reference(or child) type in case of arrays

char *Type':tag0

Reds the tag for the type

FieldPtr Type::flist0

Returns field list (for structures only)

Un iquel D *Type: :type i D 0

Returns type ID

xdrproct T_::xdmhiidprocO

Returns. XDR function for the reference or child b'pe

xd_uncptr Type:'xdffuncptr()

Rean-ns XDR function for type object.

_LD CLASS

Constructor and Destructor

Fieid:'Field(char *name, TypePtr type, int offset, FieldPtr next, int *result)

Description: constructor for field object

Arguments: name is the tag for the object usefifl in case of creating structures, offset is the

position where the field begins in the object, type is pointer to Type object the field repre-

sents, next is used in for creating field fist(for structures only), result contains ROL_OK on

success or ROL_ERROR if the offset is negative.

Methods used for manipulating field lists

void Field':next(FieldPtr n)

76

, i _

Appendix: The Replicated Object Laver API

Field n is appended to this field.

FieldPtr Field'" retum_nextO

Returns the next field object in the field fist.

int Field::sizeO

Retums the size of field list with this pointer being the head of the fist.

void Fieid::printO

Prints the offset and size of the Fields in the field list with this pointer being _e head of the

list.

Access Methods

int Field::offsetO

Re._s offset for the field

TypePtr Fieid':typeO

Returns type of the field

77

